Abstract: The present invention provides methods and compositions of engineered cells for use in the continuous or transient delivery of growth factors and angiogenesis modulating agents, such as vascular endothelial growth factor (VEGF), in conjunction with constructs for replacing or augmenting organ functions. In one aspect of the invention, the genetically engineered cells can be immature cells that are capable of differentiating and assimilating into the target region. The methods of the present invention can be used to enhance vascularization locally at a target site in need of repair, growth, or implantation through the incorporation of autologous cells which have been genetically engineered to secrete a growth factor or angiogenesis modulating agent.
Abstract: The present invention provides a method of generating a nucleic acid, which specifically binds to an extracellular surface protein expressed by a cell of interest, and which nucleic acid comprises a compound of interest to be delivered to the cell of interest.
Abstract: Surgical devices configured to apply and hold a defined pre-set or pre-load tension to target tissue, such as, for example, a blood vessel, tendon or ligament during a surgical procedure.
Type:
Grant
Filed:
November 9, 2010
Date of Patent:
January 6, 2015
Assignee:
Wake Forest University Health Sciences
Inventors:
Sandeep Mannava, Martin L Tanaka, Christopher J. Tuohy
Abstract: Methods, systems, devices and apparatus for use in screening and/or selecting a library of nucleic acid molecules and/or nucleic acid tagged or encoded molecules for binding to or interaction with a target molecule or substance (e.g., for use in new compound or drug discovery) are described. In some embodiments the device comprises: (a) a spatially addressable array, said array comprising a plurality of separate and discrete locations thereon; (b) a plurality of different oligomers operably connected to said spatially addressable array at different ones of said separate and discrete locations; (c) a tag sequence which is complementary to, and is hybridized to, each of said oligomers; and (d) a candidate chemical operably connected to each of said tag sequences, wherein each of said discrete locations is a unique identifier for its corresponding oligomer; and wherein said tag sequence is a unique identifier for its connected candidate chemical.
Type:
Application
Filed:
December 21, 2012
Publication date:
January 1, 2015
Applicants:
Wake Forest University, NanoMedica LLC
Inventors:
Keith Bonin, Jed C. Macosko, Jason Gagliano, Martin Guthold, Roger Cubicciotti
Abstract: A malleable bone graft composition is described. The composition comprises: (a) keratose; (b) particulate filler; (c) antibiotic; and (f) water. The invention may be provided in sterile form in an container, and optionally lyophilized. Methods of treating a fracture with such compositions are also described.
Abstract: The invention pertains to methods of producing artificial composite tissue constructs that permit coordinated motion. Biocompatable structural matrices having sufficient rigidity to provide structural support for cartilage-forming cells and bone-forming cells are used. Biocompatable flexible matrices seeded with muscle cells are joined to the structural matrices to produce artificial composite tissue constructs that are capable of coordinated motion.
Type:
Application
Filed:
April 18, 2014
Publication date:
December 18, 2014
Applicant:
Wake Forest University Health Sciences
Inventors:
Anthony Atala, James J. Yoo, Grace Lim, Sang Jin Lee
Abstract: MEX3C deficiency impairs the development of white and brown adipose tissue. Hence the present invention provides, among other things, a method of screening a candidate compound for activity in inhibiting fat deposition in a subject in need thereof and/or treating a condition in a subject in need thereof, comprising: (a) contacting a candidate compound to a cell that expresses MEX3C protein; and then (b) detecting a quantity of expression of the MEX3C protein in the cell; a depression in the expression of MEX3C protein when the candidate compound is contacted thereto as compared to that expressed when the candidate compound is not contacted thereto indicating the compound is active in inhibiting fat deposition and/or treating a condition in a subject in need thereof. Methods of treatment and screening subjects are also described.
Abstract: Provided herein are methods of producing a meniscus scaffold to remove material and increase the pore size and porosity therein. In some embodiments, methods include seeding the tissue with allogeneic or autogeneic cells. Bioscaffolds produced by the processes described herein are also provided, as are methods of treating a subject in need of a bioscaffold implant.
Abstract: Provided herein are implantable or insertable biomedical devices comprising a substrate and a collagen inhibitor on or in said substrate, and methods of treatment using the same. In some embodiments, the device is a urethral, ureteral, or nephroureteral catheter or stent. Kits comprising the same are also provided.
Type:
Grant
Filed:
November 30, 2007
Date of Patent:
November 11, 2014
Assignee:
Wake Forest University Health Sciences
Inventors:
Steve J. Hodges, Anthony Atala, James J. Yoo
Abstract: Provided herein are implantable or insertable biomedical devices comprising a substrate and a collagen inhibitor on or in said substrate, and methods of treatment using the same. In some embodiments, the device is an absorbable esophageal or tracheal stent. In some embodiments, the device is a vascular stent. Wound closure devices are also provided herein, including a substrate and a collagen inhibitor on or in the substrate. Also provided are surgical packings, including a substrate and a collagen inhibitor on or in the substrate. A barrier material for preventing adhesions in a subject is further provided, including a preformed or in situ formable barrier substrate and a collagen inhibitor on or in the substrate. An ointment comprising a collagen inhibitor is further provided. Kits comprising the coated substrates are also provided.
Type:
Grant
Filed:
May 30, 2008
Date of Patent:
November 11, 2014
Assignee:
Wake Forest University Health Sciences
Inventors:
Christopher A. Sullivan, Steve J. Hodges, Anthony Atala, James J. Yoo
Abstract: An isolated protein or peptide selected from the group consisting of Bordetella colonization factor A (BcfA) protein and antigenic fragments thereof is described, along with an isolated nucleic acid encoding the same, antibodies that bind to the same, methods of producing an immune response in a mammalian subject in need thereof by administering the proteins, peptides or antibodies, and pharmaceutical compositions comprising the same.
Type:
Grant
Filed:
October 23, 2008
Date of Patent:
November 4, 2014
Assignee:
Wake Forest University Health Sciences
Inventors:
Rajendar K. Deora, Meenu Mishra, Neelima Sukumar
Abstract: Active compounds include compounds of Formula I and Formula II are described: along with compositions containing the same and methods of use thereof.
Type:
Application
Filed:
February 28, 2014
Publication date:
October 30, 2014
Applicant:
Wake Forest University Health Sciences
Inventors:
Freddie R. Salsbury, JR., Karin D. Scarpinato, S. Bruce King
Abstract: A method of screening for increased risk of fatal prostate cancer in a subject comprises providing a blood sample collected from the subject, and then detecting the presence or absence of an increased level of serum calcium in the sample. An increased level of serum calcium indicates the subject is at increased risk of fatal prostate cancer.
Abstract: Evaluating tissue characteristics including identification of injured tissue or alteration of the ratios of native tissue components such as shifting the amounts of normal myocytes and fibrotic tissue in the heart, identifying increases in the amount of extracellular components or fluid (like edema or extracellular matrix proteins), or detecting infiltration of tumor cells or mediators of inflammation into the tissue of interest in a patient, such as a human being, is provided by obtaining a first image of tissue including a region of interest from a first acquisition, and obtaining a second image of the tissue including the region of interest during a second, subsequent acquisition. The subsequent acquisition may be obtained after a period of time to determine if injury has occurred during that period of time. Such a comparison may include comparison of mean, average characteristics, histogram shape, such as skew and kurtosis, or distribution of intensities within the histogram.
Type:
Grant
Filed:
August 7, 2013
Date of Patent:
October 28, 2014
Assignee:
Wake Forest University Health Sciences
Inventors:
William Gregory Hundley, Craig A. Hamilton, Kimberly Lane, Tim Morgan, Frank Torti
Abstract: Cardiac information of a patient is displayed by obtaining a plurality of MRI cine loops of the heart of the patient at a plurality of heart rates, the plurality of cine loops including both wall motion cine loops and at least one perfusion cine loops and simultaneously displaying both the wall motion cine loops and the at least one perfusion cine loop.
Type:
Grant
Filed:
September 13, 2012
Date of Patent:
October 28, 2014
Assignee:
Wake Forest University Health Sciences
Inventors:
Craig A. Hamilton, William Gregory Hundley
Abstract: The present invention provides an organic fibrous photovoltaic device with a frequency conversion region comprising a waveguide being arranged normal to the axis of the fiber.
Abstract: The subject matter relates to relates to a one-bead-one-sequence composition, a library of tagged chemicals comprising a plurality of one-bead-one-sequence compositions, a method for identifying a candidate molecule from a library of tagged chemicals, and a composition produced by a process, all as described herein.
Abstract: The present invention provides compounds of Formula I: wherein: R1 is a label (e.g., a detectable group and an anti-tumor agent); L is present or absent and when present is a linking group; and x represents an integer from 1 to 10; or a pharmaceutically acceptable salt thereof. The compounds are useful for, among other things, identifying cysteine sulfenic acids in proteins and monitoring oxidative damage in proteins and cells. Adduct formation can be detected using analytical methods such as electrospray ionization mass spectrometry and fluorescence.
Type:
Grant
Filed:
June 18, 2013
Date of Patent:
September 23, 2014
Assignee:
Wake Forest University Health Sciences
Inventors:
Leslie B. Poole, S. Bruce King, Jacquelyn S. Fetrow
Abstract: Differentiation and stability of neural stem cells can be enhanced by in vitro or in vivo culturing with one or more extracellular matrix (ECM) compositions, such as collagen I, IV, laminin and/or a heparan sulfate proteoglycan. In one aspect of the invention, adult mammalian enteric neuronal progenitor cells can be induced to differentiate on various substrates derived from components or combinations of neural ECM compositions. Collagen I and IV supported neuronal differentiation and extensive glial differentiation individually and in combination. Addition of laminin or heparan sulfate to collagen substrates unexpectedly improved neuronal differentiation, increasing neuron number, branching of neuronal processes, and initiation of neuronal network formation. In another aspect, neuronal subtype differentiation was affected by varying ECM compositions in hydrogels overlaid on intestinal smooth muscle sheets.
Abstract: Methods, systems, computer programs, circuits and workstations are configured to generate at least one two-dimensional weighted CBF territory map of color-coded source artery locations using an automated vascular segmentation process to identify source locations using mutual connectivity in both image and label space.