Patents Examined by Abdulfattah Mustapha
  • Patent number: 8802557
    Abstract: A method for forming a micro bump includes forming a first nano-particle layer on a substrate and forming a second nano-particle layer on the first nano-particle layer. The first and second nano-particle layers include a plurality of first nano particles and a plurality of second nano particles, respectively. The method further includes irradiating a laser beam onto the second nano-particle layer, where the laser beam penetrates through the second nano-particle layer and is at least partially absorbed by at least some of the first nano particles to generate heat. The first nano particles and the second nano particles have different absorption rates with respect to the laser beam.
    Type: Grant
    Filed: March 27, 2013
    Date of Patent: August 12, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Ruoh-Huey Uang, Yi-Ting Cheng
  • Patent number: 8772070
    Abstract: A method for manufacturing solid-state imaging device for collectively manufacturing a multiplicity of solid-state imaging devices at a wafer level, the method including: a step of reducing the thickness of a cover glass wafer (10) after providing a mask material (12) to the cover glass wafer (10) including frame-shaped spacers (5); a step of releasing the mask material (12) and laminating a first support wafer (14) through a lamination member (16); a step of positioning and bonding a silicon wafer (18) and the cover glass wafer (10), the silicon wafer (18) including a second support wafer (22) laminated on the back side through a lamination member (24); a step of dicing the cover glass wafer (10) into cover glasses (4) by a whetstone (26); and a step of dicing the silicon wafer (18) by a whetstone (28).
    Type: Grant
    Filed: September 2, 2009
    Date of Patent: July 8, 2014
    Assignee: FUJIFILM Corporation
    Inventor: Miyuki Watanabe
  • Patent number: 8765586
    Abstract: Disclosed herein are various methods of forming metal silicide regions on semiconductor devices. In one example, the method includes forming a sacrificial gate structure above a semiconducting substrate, performing a selective metal silicide formation process to form metal silicide regions in source/drain regions formed in or above the substrate, after forming the metal silicide regions, removing the sacrificial gate structure to define a gate opening and forming a replacement gate structure in the gate opening, the replacement gate structure comprised of at least one metal layer.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: July 1, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Clemens Fitz, Peter Baars, Markus Lenski
  • Patent number: 8748298
    Abstract: Semiconductor materials including a gallium nitride material region and methods associated with such structures are provided. The semiconductor structures include a strain-absorbing layer formed within the structure. The strain-absorbing layer may be formed between the substrate (e.g., a silicon substrate) and an overlying layer. It may be preferable for the strain-absorbing layer to be very thin, have an amorphous structure and be formed of a silicon nitride-based material. The strain-absorbing layer may reduce the number of misfit dislocations formed in the overlying layer (e.g., a nitride-based material layer) which limits formation of other types of defects in other overlying layers (e.g., gallium nitride material region), amongst other advantages. Thus, the presence of the strain-absorbing layer may improve the quality of the gallium nitride material region which can lead to improved device performance.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: June 10, 2014
    Assignee: International Rectifier Corporation
    Inventors: Edwin L. Piner, John C. Roberts, Pradeep Rajagopal
  • Patent number: 8748296
    Abstract: A method to minimize edge-related substrate breakage during spalling using an edge-exclusion region where the stressor layer is either non-present (excluded either during deposition or removed afterwards) or present but significantly non-adhered to the substrate surface in the exclusion region is provided. In one embodiment, the method includes forming an edge exclusion material on an upper surface and near an edge of a base substrate. A stressor layer is then formed on exposed portions of the upper surface of the base substrate and atop the edge exclusion material, A portion of the base substrate that is located beneath the stressor layer and which is not covered by the edge exclusion material is then spalled.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: June 10, 2014
    Assignee: International Business Machines Corporation
    Inventors: Stephen W. Bedell, Keith E. Fogel, Paul A. Lauro, Devendra K. Sadana, Davood Shahrjerdi, Norma E. Sosa Cortes
  • Patent number: 8741783
    Abstract: A method of cleaning an inside of a processing chamber is provided according to an embodiment of the present disclosure. The method includes supplying a fluorine-based gas and a nitrogen oxide-based gas as the cleaning gas, into the processing chamber heated to a first temperature, and removing a deposit by a thermochemical reaction. The method further includes changing a temperature in the processing chamber to a second temperature higher than the first temperature, and supplying the fluorine-based gas and the nitrogen oxide-based gas as the cleaning gas, and removing extraneous materials, remaining on the surface of the member in the processing chamber, by a thermochemical reaction.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: June 3, 2014
    Assignee: Hitachi Kokusai Electric Inc.
    Inventors: Kenji Kameda, Yuji Urano
  • Patent number: 8728933
    Abstract: A method of kerf formation and treatment for solar cells and semiconductor films and a system therefor are described. A semiconductor film is backed by a first metal layer and topped by a second metal layer. A reference feature is defined on the film. An ultraviolet laser beam is aligned to the reference feature. A kerf is cut along the reference feature, using the ultraviolet laser beam. The beam cuts through the second metal layer, through the film and through the first metal layer. Cutting leaves debris deposited on walls of the kerf. The debris is cleaned off of the walls, using an acid-based solvent. In the case of solar cells, respective first terminals of the solar cells are electrically isolated by the cleaned kerf, and respective negative terminals of the solar cells are electrically isolated by the cleaned kerf.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: May 20, 2014
    Assignee: Alta Devices, Inc.
    Inventors: Michael Andres, Laila Mattos, Daniel G. Patterson, Gang He
  • Patent number: 8728864
    Abstract: A portable memory card formed from a multi-die assembly, and methods of fabricating same, are disclosed. One such multi-die assembly includes an LGA SiP semiconductor package and a leadframe-based SMT package both affixed to a PCB. The multi-die assembly thus formed may be encased within a standard lid to form a completed portable memory card, such as a standard SD™ card. Test pads on the LGA SiP package, used for testing operation of the package after it is fabricated, may also be used for physically and electrically coupling the LGA SiP package to the PCB.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: May 20, 2014
    Assignee: SanDisk Technologies Inc.
    Inventors: Ning Ye, Robert C. Miller, Cheemen Yu, Hem Takiar, Andre McKenzie
  • Patent number: 8728930
    Abstract: A method of forming metal silicide-comprising material includes forming a substrate which includes a first stack having second metal over first metal over silicon and a second stack having second metal over silicon. The first and second metals are of different compositions. The substrate is subjected to conditions which react the second metal with the silicon in the second stack to form metal silicide-comprising material from the second stack. The first metal between the second metal and the silicon in the first stack precludes formation of a silicide comprising the second metal and silicon from the first stack. After forming the metal silicide-comprising material, the first metal, the second metal and the metal silicide-comprising material are subjected to an etching chemistry that etches at least some remaining of the first and second metals from the substrate selectively relative to the metal silicide-comprising material.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: May 20, 2014
    Assignee: Micron Technology, Inc.
    Inventors: David H. Wells, John Mark Meldrim, Rita J. Klein
  • Patent number: 8728917
    Abstract: A carbon nanotube forming method including providing a target substrate to be processed, a catalytic metal layer being formed on a surface of the target substrate; producing catalytic fine metal particles whose surfaces are oxidized by action of an oxygen plasma on the catalytic metal layer at a temperature T1; and activating the oxidized surfaces of the catalytic fine metal particles by reducing the oxidized surfaces of the catalytic fine metal particles by action of a hydrogen plasma on the catalytic fine metal particles at a temperature T2 higher than the temperature T1. The method further includes growing a carbon nanotube on the activated catalytic fine metal particles by thermal CVD at a temperature T3.
    Type: Grant
    Filed: February 23, 2012
    Date of Patent: May 20, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Takashi Matsumoto, Osayuki Akiyama, Kenjiro Koizumi
  • Patent number: 8716126
    Abstract: Disclosed herein is an illustrative semiconductor device that includes a transistor having drain and source regions and a gate electrode structure. The disclosed semiconductor device also includes a contact bar formed in a first dielectric material that connects to one of the drain and source regions and includes a first conductive material, the contact bar extending along a width direction of the transistor. Moreover, the illustrative device further includes, among other things, a conductive line formed in a second dielectric material, the conductive line including an upper portion having a top width extending along a length direction of the transistor and a lower portion having a bottom width extending along the length direction that is less than the top width of the upper portion, wherein the conductive line connects to the contact bar and includes a second conductive material that differs from the first conductive material.
    Type: Grant
    Filed: February 18, 2013
    Date of Patent: May 6, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Thomas Werner, Peter Baars, Frank Feustel
  • Patent number: 8709933
    Abstract: A method for making an interconnection component is disclosed, including forming a plurality of metal posts extending away from a reference surface. Each post is formed having a pair of opposed end surface and an edge surface extending therebetween. A dielectric layer is formed contacting the edge surfaces and filling spaces between adjacent ones of the posts. The dielectric layer has first and second opposed surfaces adjacent the first and second end surfaces. The dielectric layer has a coefficient of thermal expansion of less than 8 ppm/° C. The interconnection component is completed such that it has no interconnects between the first and second end surfaces of the posts that extend in a lateral direction. First and second pluralities of wettable contacts are adjacent the first and second opposed surfaces. The wettable contacts are usable to bond the interconnection component to a microelectronic element or a circuit panel.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: April 29, 2014
    Assignee: Tessera, Inc.
    Inventors: Belgacem Haba, Ilyas Mohammed
  • Patent number: 8697583
    Abstract: Provided according to embodiments of the present invention are an oxidation-promoting compositions, methods of forming oxide layers, and methods of fabricating semiconductor devices. In some embodiments of the invention, the oxidation-promoting composition includes an oxidation-promoting agent having a structure of A-M-L, wherein L is a functional group that is chemisorbed to a surface of silicon, silicon oxide, silicon nitride, or metal, A is a thermally decomposable oxidizing functional group, and M is a moiety that allows A and L to be covalently bonded to each other.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: April 15, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kyung-seok Oh, Kyung-mun Byun, Shin-hye Kim, Deok-young Jung, Gil-heyun Choi, Eunkee Hong
  • Patent number: 8685757
    Abstract: A method for fabricating a magnetic tunnel junction element includes forming a magneto resistance layer including a first magnetic layer, an insulation layer and a second magnetic layer on a substrate, forming a magnetic loss area by doping a magnetic loss impurity into a region of the magneto resistance layer to cause a magnetic loss, and etching the magnetic loss area to form a magnetic tunnel junction element.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: April 1, 2014
    Assignee: SK Hynix Inc.
    Inventors: Dong Ha Jung, Gyu An Jin, Su Ryun Min
  • Patent number: 8685762
    Abstract: A light emitting device comprises: an LED chip having a quantum well structure and a light emitting layer made of a gallium nitride compound semiconductor; a first transparent material covering the LED chip; a second transparent material for protecting the LED chip and the first transparent material; and a phosphor for absorbing a part of the light from the LED chip and emitting a light having a wavelength different from the light from the LED chip; wherein the phosphor is included in second transparent material, and the light from the LED chip and the light from said phosphor are mixed to make a white light.
    Type: Grant
    Filed: August 15, 2011
    Date of Patent: April 1, 2014
    Assignee: Nichia Corporation
    Inventors: Yoshinori Shimizu, Kensho Sakano, Yasunobu Noguchi, Toshio Moriguchi
  • Patent number: 8679883
    Abstract: Various embodiments of the present disclosure pertain to selective photo-enhanced wet oxidation for nitride layer regrowth on substrates. In one aspect, a semiconductor structure may comprise: a first substrate structure; a III-nitride structure bonded with the first substrate structure; a plurality of air gaps formed between the first substrate structure and the III-nitride structure; and a III-oxide layer formed on surfaces around the air gaps, wherein a portion of the III-nitride structure including surfaces around the air gaps is transformed into the III-oxide layer by a selective photo-enhanced wet oxidation, and the III-oxide layer is formed between an untransformed portion of the III-nitride structure and the first substrate structure.
    Type: Grant
    Filed: April 9, 2013
    Date of Patent: March 25, 2014
    Assignee: Opto Tech Corporation
    Inventors: Lung-Han Peng, Jeng-Wei Yu, Po-Chun Yeh
  • Patent number: 8679866
    Abstract: A light emitting device comprises: an LED chip having a quantum well structure and a light emitting layer made of a gallium nitride compound semiconductor; a first transparent material covering the LED chip; a second transparent material for protecting the LED chip and the first transparent material; and a phosphor for absorbing a part of the light from the LED chip and emitting a light having a wavelength different from the light from the LED chip; wherein the phosphor is included in second transparent material, and the light from the LED chip and the light from said phosphor are mixed to make a white light.
    Type: Grant
    Filed: November 16, 2010
    Date of Patent: March 25, 2014
    Assignee: Nichia Corporation
    Inventors: Yoshinori Shimizu, Kensho Sakano, Yasunobu Noguchi, Toshio Moriguchi
  • Patent number: 8673655
    Abstract: An electronic package implemented in an electronic device may include a damaged connection that restricts electrical communication between components in the electronic package. For example, the damaged connection may restrict communication between a silicon unit, such as a processor die for example, and a printed circuit board. The damaged connection may be repaired without damaging other components in the electronic package by using a repair apparatus that includes a heating element and a cooling element. The heating element may be activated to transfer heat to the electronic package for reforming the damaged connection between components to enable effective electrical communication. The cooling element may be activated for cooling components in the electronic package to prevent damage due to the transfer of the heat from the heating element. The heating element and/or the cooling element may be activated in a predetermined pattern to facilitate the repair of the damaged connection.
    Type: Grant
    Filed: February 22, 2012
    Date of Patent: March 18, 2014
    Assignee: Gamestop Texas, Ltd.
    Inventor: Asim Naqvi
  • Patent number: 8673750
    Abstract: A method can include depositing a thin metal film on a substrate of a sample, establishing a metal island on the substrate by patterning the thin metal film, and annealing the sample to de-wet the metal island and form a metal droplet from the metal island. The method can also include growing a nanowire on the substrate using the metal droplet as a catalyst, depositing a thin film of a semiconductor material on the sample, annealing the sample to allow for lateral crystallization to form a crystal grain, and patterning the crystal grain to establish a crystal island. An electronic device can be fabricated using the crystal island.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: March 18, 2014
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Robert A. Street, Sourobh Raychaudhuri
  • Patent number: 8669181
    Abstract: Films having high hermeticity and a low dielectric constant can be used as copper diffusion barrier films, etch stop films, CMP stop films and other hardmasks during IC fabrication. Hermetic films can protect the underlying layers, such as layers of metal and dielectric, from exposure to atmospheric moisture and oxygen, thereby preventing undesirable oxidation of metal surfaces and absorption of moisture by a dielectric. Specifically, a bi-layer film having a hermetic bottom layer composed of hydrogen doped carbon and a low dielectric constant (low-k) top layer composed of low-k silicon carbide (e.g., high carbon content hydrogen doped silicon carbide) can be employed. Such bi-layer film can be deposited by PECVD methods on a partially fabricated semiconductor substrate having exposed layers of dielectric and metal.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: March 11, 2014
    Assignee: Novellus Systems, Inc.
    Inventors: Yongsik Yu, Pramod Subramonium, Zhiyuan Fang, Jon Henri, Elizabeth Apen, Dan Vitkavage