Patents Examined by Adams S Bowen
  • Patent number: 11990377
    Abstract: A method includes forming isolation regions extending into a semiconductor substrate, and forming a first plurality of protruding fins and a second protruding fin over the isolation regions. The first plurality of protruding fins include an outer fin farthest from the second protruding fin, and an inner fin closest to the second protruding fin. The method further includes etching the first plurality of protruding fins to form first recesses, growing first epitaxy regions from the first recesses, wherein the first epitaxy regions are merged to form a merged epitaxy region, etching the second protruding fin to form a second recess, and growing a second epitaxy region from the second recess. A top surface of the merged epitaxy region is lower on a side facing toward the second epitaxy region than on a side facing away from the second epitaxy region.
    Type: Grant
    Filed: November 28, 2022
    Date of Patent: May 21, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventor: Shahaji B. More
  • Patent number: 11991877
    Abstract: DRAM circuitry comprises a memory array comprising memory cells individually comprising a transistor and a charge-storage device. The transistors individually comprise two source/drain regions having a gate there-between that is part of one of multiple wordlines of the memory array. One of the source/drain regions is electrically coupled to one of the charge-storage devices. The other of the source/drain regions is electrically coupled to one of multiple sense lines of the memory array. Peripheral circuitry comprises wordline-driver transistors having gates which individually comprise one of the wordlines and comprises sense-line-amplifier transistors having gates which individually comprise one of the sense lines. The sense-line-amplifier transistors and the wordline-driver transistors individually are a finFET having at least one fin comprising a channel region of the respective finFET.
    Type: Grant
    Filed: July 29, 2021
    Date of Patent: May 21, 2024
    Assignee: Micron Technology, Inc.
    Inventors: Toshihiko Miyashita, Dan Mocuta
  • Patent number: 11984363
    Abstract: A semiconductor device includes a semiconductor substrate, a first epitaxial feature having a first semiconductor material over the semiconductor substrate, and a second epitaxial feature having a second semiconductor material over the semiconductor substrate. The second semiconductor material being different from the first semiconductor material. The semiconductor device further includes a first silicide layer on the first epitaxial feature, a second silicide layer on the second epitaxial feature, a metal layer on the first silicide layer, a first contact feature over the metal layer, and a second contact feature over the second silicide layer. A first number of layers between the first contact feature and the first epitaxial feature is greater than a second number of layers between the second contact feature and the second epitaxial feature.
    Type: Grant
    Filed: November 28, 2022
    Date of Patent: May 14, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shih-Cheng Chen, Chun-Hsiung Lin, Chih-Hao Wang
  • Patent number: 11978805
    Abstract: A semiconductor device includes first active patterns on a PMOSFET section of a logic cell region of a substrate, second active patterns on an NMOSFET section of the logic cell region, third active patterns on a memory cell region of the substrate, fourth active patterns between the third active patterns, and a device isolation layer that fills a plurality of first trenches and a plurality of second trenches. Each of the first trenches is interposed between the first active patterns and between the second active patterns. Each of the second trenches is interposed between the fourth active patterns and between the third and fourth active patterns. Each of the third and fourth active patterns includes first and second semiconductor patterns that are vertically spaced apart from each other. Depths of the second trenches are greater than depths of the first trenches.
    Type: Grant
    Filed: February 17, 2023
    Date of Patent: May 7, 2024
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Soonmoon Jung, Daewon Ha, Sungmin Kim, Hyojin Kim, Keun Hwi Cho
  • Patent number: 11978779
    Abstract: A semiconductor device includes a first active pattern on a substrate. The first active pattern includes a pair of first source/drain patterns and a first channel pattern therebetween. A gate electrode is disposed on the first channel pattern, and a first gate spacer is disposed on a side surface of the gate electrode. The first gate spacer includes a first spacer and a second spacer. A top surface of the first spacer is lower than a top surface of the second spacer. A first blocking pattern is disposed on the first spacer, and a gate contact is coupled to the gate electrode. The first blocking pattern is interposed between the gate contact and the second spacer.
    Type: Grant
    Filed: January 21, 2022
    Date of Patent: May 7, 2024
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Juyoun Kim, Hyung Jong Lee, Seulgi Yun, Seki Hong
  • Patent number: 11978676
    Abstract: A device includes a first semiconductor fin extending from a substrate, a second semiconductor fin extending from the substrate, a dielectric fin over the substrate, a first isolation region between the first semiconductor fin and the dielectric fin, and a second isolation region between the first semiconductor fin and the second semiconductor fin. The first semiconductor fin is disposed between the second semiconductor fin and the dielectric fin. The first isolation region has a first concentration of an impurity. The second isolation region has a second concentration of the impurity. The second concentration is less than the first concentration. A top surface of the second isolation region is disposed closer to the substrate than a top surface of the first isolation region.
    Type: Grant
    Filed: February 7, 2022
    Date of Patent: May 7, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Szu-Ying Chen, Po-Kang Ho, Sen-Hong Syue, Huicheng Chang, Yee-Chia Yeo
  • Patent number: 11948832
    Abstract: A semiconductor manufacturing process and semiconductor device having an airgap to isolate bottom implant portions of a substrate from upper source and drain device structure to reduce bottom current leakage and parasitic capacitance with an improved scalability on n-to-p spacing scaling. The disclosed device can be implanted to fabricate nanosheet FET and other such semiconductor device. The airgap is formed by etching into the substrate, below a trench in a vertical and horizontal direction. The trench is then filled with dielectric and upper device structure formed on either side of the dielectric filler trench.
    Type: Grant
    Filed: September 21, 2021
    Date of Patent: April 2, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Yan Zhang, Johannes M. van Meer, Naushad K. Variam
  • Patent number: 11945963
    Abstract: A non-conductive substrate being at least partially coated with a paint including reduced graphene oxide and a thermosetting polymer, the non-conductive substrate being directly coated by the paint, a method for the manufacture of this coated non-conductive substrate, methods for detecting leaks or strain deformation and the uses of said coated non-conductive substrate.
    Type: Grant
    Filed: June 11, 2019
    Date of Patent: April 2, 2024
    Assignee: ArcelorMittal
    Inventors: Abel Alvarez-Alvarez, Oscar Perez Vidal, Carlos Javier Rodriguez Martinez, Jose Paulino Fernandez Alvarez, Carlos Suarez Garcia, Hugo Blanco Iglesias, Jorge Melconmiguel
  • Patent number: 11935936
    Abstract: [Object] It is an object of the present invention to provide an aluminum alloy film having excellent bending resistance and heat resistance, and a thin film transistor including the aluminum alloy film. [Solving Means] In order to achieve the above-mentioned object, an aluminum alloy film according to an embodiment of the present invention includes: an Al pure metal that includes at least one type of a first additive element selected from the group consisting of Zr, Sc, Mo, Y, Nb, and Ti. A content of the first additive element is 0.01 atomic % or more and 1.0 atomic % or less. Such an aluminum alloy film has excellent bending resistance and excellent heat resistance. Further, also etching can be performed on the aluminum alloy film.
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: March 19, 2024
    Assignee: ULVAC, INC.
    Inventors: Yuusuke Ujihara, Motoshi Kobayashi, Yasuhiko Akamatsu, Tomohiro Nagata, Ryouta Nakamura, Junichi Nitta, Yasuo Nakadai
  • Patent number: 11929409
    Abstract: Semiconductor device includes a substrate having multiple fins formed from a substrate, a first source/drain feature comprising a first epitaxial layer in contact with a first fin, a second epitaxial layer formed on the first epitaxial layer, and a third epitaxial layer formed on the second epitaxial layer, the third epitaxial layer comprising a center portion and an edge portion that is at a different height than the center portion; a fourth epitaxial layer formed on the third epitaxial layer, a second source/drain feature adjacent the first source/drain feature, comprising a first epitaxial layer in contact with a second fin, a second epitaxial layer formed on the first epitaxial layer of the second source/drain feature, a third epitaxial layer formed on the second epitaxial layer of the second source/drain feature, the third epitaxial layer comprising a center portion and an edge portion that is at a different height than the center portion of the third epitaxial layer of the second source/drain feature; a
    Type: Grant
    Filed: October 14, 2022
    Date of Patent: March 12, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Wei Ju Lee, Chun-Fu Cheng, Chung-Wei Wu, Zhiqiang Wu
  • Patent number: 11923150
    Abstract: Disclosed herein are IC structures with one or more decoupling capacitors based on dummy TSVs provided in a support structure. An example decoupling capacitor includes first and second capacitor electrodes and a capacitor insulator between them. The first capacitor electrode is a liner of a first electrically conductive material on sidewalls and a bottom of an opening in the support structure, the opening in the support structure extending from the first side towards, but not reaching, the second side. The capacitor insulator is a liner of a dielectric material on sidewalls and a bottom of the opening in the support structure lined with the first electrically conductive material. The second capacitor electrode is a second electrically conductive material filling at least a portion of the opening in the support structure lined with the first electrically conductive material and with the dielectric material.
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: March 5, 2024
    Assignee: Intel Corporation
    Inventor: Changyok Park
  • Patent number: 11923366
    Abstract: In an embodiment, a device includes: a first semiconductor fin extending from a substrate; a second semiconductor fin extending from the substrate; a hybrid fin over the substrate, the second semiconductor fin disposed between the first semiconductor fin and the hybrid fin; a first isolation region between the first semiconductor fin and the second semiconductor fin; and a second isolation region between the second semiconductor fin and the hybrid fin, a top surface of the second isolation region disposed further from the substrate than a top surface of the first isolation region.
    Type: Grant
    Filed: July 9, 2021
    Date of Patent: March 5, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Po-Kang Ho, Tsai-Yu Huang, Huicheng Chang, Yee-Chia Yeo
  • Patent number: 11908861
    Abstract: A semiconductor device is disclosed. The semiconductor device may include an active pattern on a substrate, source/drain patterns on the active pattern, a fence spacer on side surfaces of each of the source/drain patterns, a channel pattern interposed between the source/drain patterns, a gate electrode crossing the channel pattern and extending in a first direction, and a gate spacer on a side surface of the gate electrode. A first thickness of an upper portion of the fence spacer in the first direction may be greater than a second thickness of the gate spacer in a second direction crossing the first direction.
    Type: Grant
    Filed: August 5, 2021
    Date of Patent: February 20, 2024
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Munhyeon Kim, Mingyu Kim, Doyoung Choi, Daewon Ha
  • Patent number: 11908906
    Abstract: A semiconductor structure and a fabrication method of the semiconductor structure are provided. The method includes providing a substrate, forming a first dielectric layer and a plurality of gate structures, forming source-drain doped regions, and forming a source-drain plug. The first dielectric layer covers surfaces of the gate structure, the source-drain doped region and the source-drain plug. The method also includes forming a first plug in the first dielectric layer, and forming a second dielectric layer on the first dielectric layer. The first plug is in contact with a top surface of one of the source-drain plug and the gate structure. The second dielectric layer covers the first plug. Further, the method includes forming a second plug material film in the first and second dielectric layers. The second plug material film is in contact with the top surface of one of the source-drain plug and the gate structure.
    Type: Grant
    Filed: August 26, 2021
    Date of Patent: February 20, 2024
    Assignees: SEMICONDUCTOR MANUFACTURING INTERNATIONAL (SHANGHAI) CORPORATION, SEMICONDUCTOR MANUFACTURING INTERNATIONAL (BEIJING) CORPORATION
    Inventors: Hailong Yu, Xuezhen Jing, Hao Zhang, Tiantian Zhang, Jinhui Meng
  • Patent number: 11908751
    Abstract: In an embodiment, a method includes: etching a trench in a substrate; depositing a liner material in the trench with an atomic layer deposition process; depositing a flowable material on the liner material and in the trench with a contouring flowable chemical vapor deposition process; converting the liner material and the flowable material to a solid insulation material, a portion of the trench remaining unfilled by the solid insulation material; and forming a hybrid fin in the portion of the trench unfilled by the solid insulation material.
    Type: Grant
    Filed: July 26, 2021
    Date of Patent: February 20, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Szu-Ying Chen, Sen-Hong Syue, Huicheng Chang, Yee-Chia Yeo
  • Patent number: 11908863
    Abstract: A transistor device includes a substrate, a fin structure extending on the substrate in a direction parallel to a top surface of the substrate, a source region and a drain region provided at an upper portion of the fin structure, a constant current generating layer provided at a lower portion of the fin structure, a gate insulating film provided on both side surfaces and a top surface of the upper portion of the fin structure, and a gate electrode provided on the gate insulating film, wherein the gate electrode is provided on the fin structure and between the source region and the drain region, the constant current generating layer generates a constant current between the drain region and the substrate, and the constant current is independent from a gate voltage applied to the gate electrode.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: February 20, 2024
    Assignee: UNIST(ULSAN NATIONAL INSTITUTE OF SCIENCE AND TECHNOLOGY)
    Inventors: Kyung Rok Kim, Jae Won Jeong, Young Eun Choi, Woo Seok Kim, Jiwon Chang
  • Patent number: 11908748
    Abstract: A semiconductor device includes a substrate having a first region and a second region of opposite conductivity types, an isolation feature over the substrate, a first fin protruding from the substrate and through the isolation feature in the first region, a first epitaxial feature over the first fin, a second fin protruding from the substrate and through the isolation feature in the second region, and a second epitaxial feature over the second fin. A portion of the isolation feature located between the first fin and the second fin protrudes from a top surface of the isolation feature.
    Type: Grant
    Filed: November 15, 2022
    Date of Patent: February 20, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Feng-Ching Chu, Wei-Yang Lee, Feng-Cheng Yang, Yen-Ming Chen
  • Patent number: 11908921
    Abstract: The present disclosure is directed to method for the fabrication of spacer structures between source/drain (S/D) epitaxial structures and metal gate structures in nanostructure transistors. The method includes forming a fin structure with alternating first and second nanostructure elements on a substrate. The method also includes etching edge portions of the first nanostructure elements in the fin structure to form cavities. Further, depositing a spacer material on the fin structure to fill the cavities and removing a portion of the spacer material in the cavities to form an opening in the spacer material. In addition, the method includes forming S/D epitaxial structures on the substrate to abut the fin structure and the spacer material so that sidewall portions of the S/D epitaxial structures seal the opening in the spacer material to form an air gap in the spacer material.
    Type: Grant
    Filed: August 26, 2021
    Date of Patent: February 20, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yu-Yun Peng, Fu-Ting Yen, Keng-Chu Lin
  • Patent number: 11908865
    Abstract: A semiconductor structure and a fabrication method of the semiconductor structure are provided. The semiconductor structure includes a substrate. The substrate includes a first region, a second region, and an isolation region between the first region and the second region. The semiconductor structure also includes a first fin, a second fin and a third fin disposed over the first region, the second region, and the isolation region, respectively. Further, the semiconductor structure includes a gate structure. The gate structure includes a first work function layer over the first region and a first portion of the isolation region, and a second work function layer over the second region and a second portion of the isolation region. An interface where the first work function layer is in contact with the second work function layer is located over a top surface of the third fin.
    Type: Grant
    Filed: January 14, 2022
    Date of Patent: February 20, 2024
    Assignees: Semiconductor Manufacturing International (Shanghai) Corporation, Semiconductor Manufacturing International (Beijing) Corporation
    Inventors: Da Huang, Yao Qi Dong, Xiaowan Dai, Zhen Tian
  • Patent number: 11901440
    Abstract: A semiconductor device containing a self-aligned contact rail is provided. The self-aligned contact rail can have a reduced critical dimension, CD. The self-aligned contact rail can be obtained utilizing a sacrificial semiconductor fin as a placeholder structure for the contact rail. The used of the sacrificial semiconductor fin enables reduced, and more controllable, CDs.
    Type: Grant
    Filed: September 2, 2021
    Date of Patent: February 13, 2024
    Assignee: International Business Machines Corporation
    Inventors: Yann Mignot, Christopher J. Waskiewicz, Su Chen Fan, Brent Anderson, Junli Wang