Patents Examined by Ana Woodward
  • Patent number: 9752067
    Abstract: The invention relates to a process for preparing an amine adduct, in which a polyamine component (A), a polyester component (B) and a hydrocarbon component (C) are reacted. The amine adduct is of particularly good suitability as a wetting agent and dispersant, especially for coatings and plastics applications.
    Type: Grant
    Filed: November 15, 2012
    Date of Patent: September 5, 2017
    Assignee: BYK-Chemie GmbH
    Inventors: Wolfgang Pritschins, Jürgen Omeis, Stefan Mössmer, Andrea Esser, Monika Roch
  • Patent number: 9745470
    Abstract: A film-forming composition that contains a tricarbonyl-benzene hyperbranched-polymer cross-linker and a triazine-containing hyperbranch, as shown for example in the formula, can form a thin film that excels in terms of hardness and heat tolerance and exhibits a reduced decrease in index of refraction despite the addition of the cross-linker.
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: August 29, 2017
    Assignee: NISSAN CHEMICAL INDUSTRIES, LTD.
    Inventors: Daisuke Maeda, Naoya Nishimura
  • Patent number: 9738756
    Abstract: The invention relates to a method for synthesizing a polyamide, in which method an aqueous solution is sprayed onto the polyamide before and/or during a solid-state post-condensation process. The aqueous solution comprises at least a first compound, selected from the group comprising phosphoric acid, fully neutralized salts of phosphoric acid, partially neutralized salts of phosphoric acid, and mixtures thereof, and a second compound, selected from the group comprising an acid, an anhydride, a lactone, ammonia, an amine, and mixtures thereof, with the stipulation that the second compound is not phosphoric acid and is not phosphoric acid anhydride. The spraying occurs at a temperature that lies below the boiling point of water. A polyamide that can be produced by means of the method according to the invention can be used in particular to produce films, monofilaments, fibers, threads, or textile sheet materials.
    Type: Grant
    Filed: April 30, 2014
    Date of Patent: August 22, 2017
    Assignee: BASF SE
    Inventors: Rüdiger Häffner, Rolf-Egbert Grützner, Achim Stammer, Angela Ulzhöfer
  • Patent number: 9732256
    Abstract: A pipe joining material for connecting pipes and fittings and a method of making a pipe joining material are provided. The pipe joining material may include a thermoplastic material such as polyvinyl chloride (PVC) and/or chlorinated polyvinyl chloride (CPVC) and a bonding agent for the thermoplastic material.
    Type: Grant
    Filed: August 28, 2014
    Date of Patent: August 15, 2017
    Assignee: Omachron Intellectual Property Inc.
    Inventors: Wayne Ernest Conrad, Nina Conrad, Brian Burke, Don Vivian, Allan Millman
  • Patent number: 9736935
    Abstract: The present invention relates to a resin composition that becomes a cured product that exhibits force response behavior such that an area surrounded by a tensile stress-strain curve f1(x), when an amount of strain is increased from 0% to 0.3% by pulling at 999 ?m/min while plotting the amount of strain on the x axis and tensile stress on the y axis, and also surrounded by the x axis, is greater than an area surrounded by a stress-strain curve f2(x), when the amount of strain is decreased from 0.3%, and also surrounded by the x axis, and the amount of change in the amount of strain when tensile stress is 0, before and after applying tensile stress, is 0.05% or less.
    Type: Grant
    Filed: July 30, 2014
    Date of Patent: August 15, 2017
    Assignee: PANASONIC CORPORATION
    Inventors: Hiroharu Inoue, Shingo Yoshioka
  • Patent number: 9731403
    Abstract: An elastomeric sanding block conformable to curved or flat surfaces includes a Shore A hardness ranging from about 30 to about 90, and is made from ethylene-vinyl acetate copolymer, low-density polyethylene or an admixture thereof. The polymer or admixture ranges from about 35 to about 70 percent of the sanding block composition by weight. A blowing agent is present in an amount that ranges from about 1.5 to about 4.5 percent of the composition by weight. The elastomeric sanding block may be formed by combining the polymer or admixture and other components under heat to yield a feedstock, thermoforming the feedstock in a mold to yield a foamed material sheet, and cutting the foamed material sheet.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: August 15, 2017
    Assignee: Trade Associates, Inc.
    Inventor: Bang Fang Lin
  • Patent number: 9732205
    Abstract: Embodiments of the disclosure generally provide flame retardant compositions and methods comprising organic polymers, mineral fillers, high surface area mineral fillers and process aids. Compositions of the disclosure additionally are comprised of high surface area hydrated metal carbonate fillers, including the mesoporous amorphous magnesium carbonate filler Upsalite. The filler's porous structure and high surface area provides high water capacity, enhanced physical and chemical interaction with a polymer in composite, lower by weight loadings of filler in a composite, as well as effective flame retardancy.
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: August 15, 2017
    Assignee: International Business Machines Corporation
    Inventors: Joseph Kuczynski, Melissa K. Miller, Heidi D. Williams, Jing Zhang
  • Patent number: 9725564
    Abstract: Methods of making fiber-resin compositions are described. The methods may include the providing of a thermoplastic resin to an extruder, where the thermoplastic resin may include at least one reactive moiety capable of forming a covalent bond with a coupling agent on a plurality of reactive fibers. The methods may further include combining the thermoplastic resin with the plurality of reactive fibers also supplied to the extruder. The reactive fibers are sized with the coupling agent that reacts with the thermoplastic resin to form the fiber-resin composition, which may be extruded from the extruder. Methods of making fiber-reinforced composite articles from the fiber-resin composition are also described.
    Type: Grant
    Filed: October 5, 2016
    Date of Patent: August 8, 2017
    Assignee: Johns Manville
    Inventors: Michael J Block, Mingfu Zhang, Asheber Yohannes, Klaus Friedrich Gleich, Jawed Asrar
  • Patent number: 9725552
    Abstract: A HMF-based phenol formaldehyde resin is provided. The HMF-based phenol formaldehyde resin has the formula In the formula, A includes non-substituted phenol, m-cresol, p-cresol, hydroquinone or disubstituted phenol, B includes phosphate ester, phosphate, phosphine oxide, phosphinate ester or phosphinate, and n is 3-20, wherein the disubstituted phenol has substituted groups including H, halide, C1-C20 alkyl group, C1-C20 alkenyl group, C1-C20 cycloalkyl group, C1-C20 cycloalkenyl group, homocyclic aromatic group or heterocyclic aromatic group.
    Type: Grant
    Filed: October 13, 2015
    Date of Patent: August 8, 2017
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Cheng-Han Hsieh, Hung-Jie Liou
  • Patent number: 9718928
    Abstract: A block comprised of a copolymer is obtained by ring-opening polymerization of a cyclic polyarylene sulfide, so that a block copolymer is produced to have a maximum peak molecular weight measured by size exclusion chromatography (SEC) in a range of not less than 2,000 and less than 2,000,000 and have a unimodal molecular weight distribution in this range.
    Type: Grant
    Filed: March 5, 2014
    Date of Patent: August 1, 2017
    Assignee: TORAY INDUSTRIES, INC.
    Inventors: Keiko Ichinose, Makito Yokoe, Daisuke Yamamoto, Koji Yamauchi, Kohei Yamashita
  • Patent number: 9718033
    Abstract: One method as described herein relates to making a membrane comprising an uncrosslinked high molecular weight polyimide polymer with a small amount of bulky diamine. Also as described herein is a hollow fiber polymer membrane comprising an uncrosslinked high molecular weight polyimide polymer with a small amount of bulky diamine. The polyimide polymers include monomers comprising dianhydride monomers, diamino monomers without carboxylic acid functional groups, and optionally diamino monomers with carboxylic acid functional groups, wherein 2 to 10 mole % of the diamino monomers are bulky diamino compounds and the ratio of diamino monomers with carboxylic acid functional groups to diamino monomers without carboxylic acid functional groups is 0 to 2:3. These uncrosslinked high molecular weight polyimide polymers with a small amount of bulky diamine are useful in forming polymer membranes with high permeance and good selectivity that are useful for the separation of fluid mixtures.
    Type: Grant
    Filed: April 7, 2016
    Date of Patent: August 1, 2017
    Assignees: Chevron U.S.A. Inc., Georgia Tech Research Corporation
    Inventors: Stephen Joseph Miller, William John Koros, Nanwen Li, Gongping Liu
  • Patent number: 9718923
    Abstract: One method as described herein relates to making a high molecular weight, monoesterified polyimide polymer using a small amount of bulky diamine. These high molecular weight, monoesterified polyimide polymers are useful in forming crosslinked polymer membranes with high permeance that are useful for the separation of fluid mixtures. Another method as described herein relates to making the crosslinked membranes from the high molecular weight, monoesterified polyimide polymer containing a small amount of bulky diamine. The small amount of bulky diamine allows for formation of both the high molecular weight polyimide polymer and for covalent ester crosslinks via reaction of the carboxylic acid groups with a diol crosslinking agent. This small amount of bulky diamines reduces chain mobility or segmental motion during crosslinking and reduces large loss of permeance. As such, this method provides a crosslinked membrane with good permeance and selectivity.
    Type: Grant
    Filed: December 23, 2015
    Date of Patent: August 1, 2017
    Assignees: Chevron U.S.A. Inc., Georgia Tech Research Corporation
    Inventors: Stephen Joseph Miller, William John Koros, Nanwen Li, Gongping Liu
  • Patent number: 9718032
    Abstract: One method as described herein relates to making a membrane comprising an uncrosslinked high molecular weight, monoesterified polyimide polymer with a small amount of bulky diamine. These uncrosslinked high molecular weight, monoesterified polyimide polymers with a small amount of bulky diamine are useful in forming polymer membranes with high permeance and good selectivity that are useful for the separation of fluid mixtures. Also as described herein is a hollow fiber polymer membrane comprising an uncrosslinked high molecular weight, monoesterified polyimide polymer with a small amount of bulky diamine. The small amount of bulky diamine allows for formation of a membrane comprising the uncrosslinked polymer that exhibits high permeance and good selectivity.
    Type: Grant
    Filed: April 7, 2016
    Date of Patent: August 1, 2017
    Assignees: Chevron U.S.A. Inc., Georgia Tech Research Corporation
    Inventors: Stephen Joseph Miller, William John Koros, Nanwen Li, Gongping Liu
  • Patent number: 9718921
    Abstract: Methods for preparation of novel amphiphilic derivatives of thioether containing block copolypeptides with narrow chain length distributions are described. These block copolymers can be chemically modified by oxidation and alkylation of the thioether containing residues. These materials generate self-assembled micelles, vesicles and hydrogels, or emulsions with oil phases. These assemblies can be used to encapsulate and delivery therapeutic molecules. The assemblies can be taken up by cells to release molecules from the assemblies.
    Type: Grant
    Filed: February 26, 2014
    Date of Patent: August 1, 2017
    Assignee: The Regents of the University of California
    Inventors: Timothy J. Deming, Jessica R. Kramer, April R. Rodriguez
  • Patent number: 9714341
    Abstract: Compositions of biodegradable polymer blends and methods for making these polymers are disclosed. A polymer blend may have a composition of at least one biodegradable polyester present in about 50 weight percent to about 90 weight percent of the polymer composition, at least one biodegradable elastomer with cross-linked epoxy functional groups, and at least one catalytic curing agent. The at least one biodegradable elastomer and the at least one catalytic curing agent can be present in a total amount of about 10 weight percent to about 50 weight percent of the polymer composition, and can be present in a weight-to-weight ratio of about 19:1 to about 1:1. Further, the polymer may have a notched Izod impact strength according to ASTM D256 of about 150 Joules/meter to about 1200 Joules/meter.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: July 25, 2017
    Assignee: Washington State University
    Inventors: Hongzhi Liu, Jinwen Zhang
  • Patent number: 9701790
    Abstract: The present invention relates to a process for preparing an aliphatic or semiaromatic polyamide, in which a polyamide prepolymer is subjected to a solid state polymerization.
    Type: Grant
    Filed: June 11, 2014
    Date of Patent: July 11, 2017
    Assignee: BASF SE
    Inventors: Christian Schmidt, Florian Richter, Joachim Clauss, Axel Wilms, Gad Kory, Arnold Schneller, Achim Stammer, Volker Rauschenberger, Stefan Schwiegk
  • Patent number: 9701833
    Abstract: There is provided a toner binder containing a polyester resin (P) composed of two or more polyester resins that are each obtained by polycondensation of a carboxylic acid component (x) and an alcohol component (y). The alcohol component (y) of at least one polyester resin (P1) constituting the polyester resin (P) comprises 30 to 100 molar % of an adduct (y1) of bisphenol A with 2 to 4 ethylene oxide molecules. The alcohol component (y) of at least one other polyester resin (P2) constituting the polyester resin (P) comprises 50 to 95 molar % of an aliphatic diol (y2) having 2 to 4 carbon atoms. The (P2) is other than the (P1), and the polyester resin (P) satisfies relationships as follows. 11.5?SP value [(cal/cm3)1/2] of (P)?13.0; and 5.2?HLB value (according to the Oda method) of (P)?7.1.
    Type: Grant
    Filed: September 11, 2015
    Date of Patent: July 11, 2017
    Assignee: SANYO CHEMICAL INDUSTRIES, LTD.
    Inventors: Yuko Sugimoto, Keisuke Miyamoto, Masaru Honda
  • Patent number: 9688844
    Abstract: A xylylenediamine-based polyamide resin/fiber composite material and molding are provided that do not exhibit a decline in properties under high temperatures and high humidities, and that exhibit a high elastic modulus and present little warping, and exhibit better recycle characteristics, a better moldability, and a better productivity than for thermosetting resins. The polyamide resin-type composite material comprises a fibrous material (B) impregnated with a polyamide resin (A) wherein at least 50 mole % of diamine structural units derived from xylylenediamine, and having a number-average molecular weight (Mn) of 6,000 to 30,000, and containing a component of a molecular weight of not more than 1,000 at 0.5 to 5 mass %.
    Type: Grant
    Filed: October 30, 2014
    Date of Patent: June 27, 2017
    Assignee: MITSUBISHI GAS CHEMICAL COMPANY, INC.
    Inventor: Jun Mitadera
  • Patent number: 9688823
    Abstract: The invention relates to a method for the melted production, especially by reactive extrusion, of block copolyamide comprising at least one aliphatic polyamide block and at least one semi-aromatic block, especially wherein the aromatic group has at least one hydroxyl or sulfonate function. The invention also relates to the block copolyamide that can be produced by said method; to a composition comprising the block copolyamide; to granules comprising such a copolyamide or such a composition; to a method for producing an item from a copolyamide or a composition of said copolyamide; and to uses of the copolyamide.
    Type: Grant
    Filed: November 13, 2013
    Date of Patent: June 27, 2017
    Assignees: RHODIA OPERATIONS, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
    Inventors: Naji Hussein, Didier Long, Louise-Anne Fillot, Lise Trouillet-Fonti
  • Patent number: 9683079
    Abstract: Particles of an amine-functionalized polyaryletherketone polymer or copolymer thereof. The amine-functionalized polyaryletherketone polymer or copolymer thereof is selected from the group consisting of: polyaryletherketone polymer with terminal amine or protected amine functional group(s); polyaryletherketone-imide copoplymer with terminal amine or protected amine functional group(s); and polyaryletherketone-sulphone copolymer with terminal amine or protected amine functional group(s).
    Type: Grant
    Filed: May 21, 2015
    Date of Patent: June 20, 2017
    Assignees: Ketonex Limited, Cytec Industries Inc.
    Inventors: James Francis Pratte, Robin K Maskell, Ian David Henderson Towle, Kaylie Jane Smith