Patents Examined by Benjamin Tzu-Hung Liu
  • Patent number: 8587119
    Abstract: An embodiment of the disclosure includes a conductive feature on a semiconductor die. A substrate is provided. A bond pad is formed over the substrate. The bond pad has a first width. A polyimide layer is formed over the substrate and the bond pad. The polyimide layer has a first opening over the bond pad with a second width. A silicon-based protection layer overlies the polyimide layer. The silicon-based protection layer has a second opening over the bond pad with a third width. The first opening and the second opening form a combined opening having sidewalls to expose a portion of the bond pad. A UBM layer is formed over the sidewalls of combined opening to contact the exposed portion of the bond pad. A conductive feature overlies the UBM layer.
    Type: Grant
    Filed: April 16, 2010
    Date of Patent: November 19, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chien-Ling Hwang, Yi-Wen Wu, Chung-Shi Liu
  • Patent number: 8565455
    Abstract: A method and a system are described providing multiple display systems with an enhanced acoustics experience. A source audio signal having a plurality of source audio channels is generated from an audio signal source. The system includes a plurality of speakers connected to a plurality of display systems. A speaker configuration gatherer determines the spatial configuration of the speakers. An audio signal processor is provided to generate synthesized audio signal based on the contents of the source audio signal and spatial configuration of the speakers. The synthesized audio signal is mapped and delivered to the speakers to produce an enhanced sound field.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: October 22, 2013
    Assignee: Intel Corporation
    Inventors: Devon Worrell, Vishnu Balraj, Srikanth Kambhatla, Kar Leong Wong
  • Patent number: 8552530
    Abstract: A vertical transient voltage suppressor for protecting an electronic device is disclosed. The vertical transient voltage includes a conductivity type substrate having highly doping concentration; a first type lightly doped region is arranged on the conductivity type substrate, wherein the conductivity type substrate and the first type lightly doped region respectively belong to opposite types; a first type heavily doped region and a second type heavily doped region are arranged in the first type lightly doped region, wherein the first and second type heavily doped regions and the conductivity type substrate belong to same types; and a deep first type heavily doped region is arranged on the conductivity type substrate and neighbors the first type lightly doped region, wherein the deep first type heavily doped region and the first type lightly doped region respectively belong to opposite types, and wherein the deep first type heavily doped region is coupled to the first type heavily doped region.
    Type: Grant
    Filed: August 2, 2010
    Date of Patent: October 8, 2013
    Assignee: Amazing Microelectronics Corp.
    Inventors: Kun-Hsien Lin, Zi-Ping Chen, Che-Hao Chuang, Ryan Hsin-Chin Jiang
  • Patent number: 8552544
    Abstract: A package structure includes first and second substrates, a sealant and a filler. The first substrate has a surface including an active region and a bonding region. The first substrate has a component in the active region and a pad in bonding region. The pad is electrically connected to the component. The sealant is disposed on the surface surrounding the active region. The sealant has a breach at a side of the active region. The second substrate is bonded to the first substrate via the sealant. The second substrate has a first opening corresponding to the pad, and a second opening corresponding to the breach. The filler fills the second opening, covers the breach such that the first substrate, the second substrate, the sealant and the filler together form a sealed space for accommodating the component.
    Type: Grant
    Filed: August 2, 2010
    Date of Patent: October 8, 2013
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventor: Ching-Hong Chuang
  • Patent number: 8541290
    Abstract: A method of fabricating a device by providing an auxiliary substrate having a metal nitride layer disposed thereon where the nitride layer has a nitrogen face and an opposite face and a dislocation density that is less than about 106, with the nitrogen face of the nitride layer facing the auxiliary substrate; depositing at least one epitaxial nitride layer on the exposed opposite face of the nitride layer of the structure; depositing a further metal layer over at least a portion of the epitaxial nitride layer(s); bonding a final substrate on the deposited metal layer; and removing the auxiliary substrate to form the device from the final substrate and deposited layers. Preferably, the device that is formed includes a LED or laser.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: September 24, 2013
    Assignee: Soitec
    Inventors: Fabrice Letertre, Bruce Faure
  • Patent number: 8536499
    Abstract: An RF generator power supply comprises a first switched mode power supply (SMPS) connected in series to a second SMPS by a DC bus. A capacitor is arranged between the outputs of the first SMPS and inputs of the second SMPS to act as a smoothing capacitor for the first SMPS and to supply pulse energy to the second SMPS. The second SMPS has an output connected to an input of a step-up transformer and an output of the step-up transformer is connected to an input of a rectifier connectable to the RF generator. An input of the first SMPS is connectable to a prime power supply to maintain a high power factor with low harmonic content while setting an operating voltage and peak current level for the RF generator. The second SMPS is arranged to feed the step-up transformer and is arranged to operate with a variable duty cycle and/or variable frequency to provide average power control of the RF generator. The second SMPS is rapidly switched off on detection of a power surge through the RF generator.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: September 17, 2013
    Assignee: E2V Technologies (UK) Limited
    Inventor: Robert Richardson
  • Patent number: 8530807
    Abstract: A method of operating a microwave oven and a microwave oven are disclosed. The microwave oven comprises a magnetron for providing microwave power to heat a load placed in the microwave oven, and a solid-state microwave generator for providing microwave power to sense presence and/or determine nature of the load in the microwave oven.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: September 10, 2013
    Assignee: Whirlpool Corporation
    Inventors: Olle Niklasson, Ulf Nordh, Fredrik Hallgren, Hakan Carlsson
  • Patent number: 8519391
    Abstract: Various semiconductor devices and methods of testing such devices are disclosed. In one aspect, a method of manufacturing is provided that includes forming a bore from a backside of a semiconductor chip through a buried insulating layer and to a semiconductor device layer of the semiconductor chip. A conductor structure is formed in the bore to establish an electrically conductive pathway between the semiconductor device layer and the conductor structure. The conductor structure may provide a diagnostic pathway.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: August 27, 2013
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Liang Wang, Michael R. Bruce
  • Patent number: 8507378
    Abstract: A high voltage integrated circuit device includes a semiconductor substrate having a surface region with a contact region, which is coupled to a source/drain region. The device has a plasma enhanced oxide overlying the surface region, a stop layer overlying the plasma enhanced oxide, and a contact opening through a portion of the stop layer and through a portion of the plasma enhanced oxide layer. The contact opening exposes a portion of the contact region without damaging it. The device has a silicide layer overlying the contact region to form a silicided contact region and an interlayer dielectric overlying the silicided contact region to fill the contact opening and provide a thickness of material overlying the stop layer. An opening in the interlayer dielectric layer is formed through a portion of the thickness to expose a portion of the silicided contact region and expose a portion of the stop layer.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: August 13, 2013
    Assignees: Semiconductor Manufacturing International (Shanghai) Corporation, Semiconductor Manufacturing International (Beijing) Corporation
    Inventors: ChiKang Liu, ZhengYing Wei, GuoXu Zhao, YangFeng Li, GuoLiang Zhu, FangYu Yang
  • Patent number: 8502220
    Abstract: An object is to improve reliability of a semiconductor device. A semiconductor device including a driver circuit portion and a display portion (also referred to as a pixel portion) over the same substrate is provided. The driver circuit portion and the display portion include thin film transistors in which a semiconductor layer includes an oxide semiconductor; a first wiring; and a second wiring. The thin film transistors each include a source electrode layer and a drain electrode layer which each have a shape whose end portions are located on an inner side than end portions of the semiconductor layer. In the thin film transistor in the driver circuit portion, the semiconductor layer is provided between a gate electrode layer and a conductive layer. The first wiring and the second wiring are electrically connected in an opening provided in a gate insulating layer through an oxide conductive layer.
    Type: Grant
    Filed: August 2, 2010
    Date of Patent: August 6, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Junichiro Sakata, Masayuki Sakakura, Yoshiaki Oikawa, Kenichi Okazaki, Hotaka Maruyama
  • Patent number: 8492787
    Abstract: This application discloses alight-emitting diode device, comprising an epitaxial structure having a light-emitting layer, a first-type conductivity layer, and a second-type conductivity layer wherein the thicknesses of the first-type conductivity confining layer is not equal to the second-type conductivity confining layer and the light-emitting layer is not overlapped with the portion of the epitaxial structure corresponding to the peak zone of the wave intensity distribution curve along the direction of the epitaxy growth.
    Type: Grant
    Filed: June 17, 2009
    Date of Patent: July 23, 2013
    Assignee: Epistar Corporation
    Inventors: Ta-Cheng Hsu, Meng-Lun Tsai
  • Patent number: 8492865
    Abstract: An image sensor array includes a substrate layer, a metal layer, an epitaxial layer, a plurality of imaging pixels, and a contact dummy pixel. The metal layer is disposed above the substrate layer. The epitaxial layer is disposed between the substrate layer and the metal layer. The imaging pixels are disposed within the epitaxial layer and each include a photosensitive element for collecting an image signal. The contact dummy pixel is dispose within the epitaxial layer and includes an electrical conducting path through the epitaxial layer. The electrical conducting path couples to the metal layer above the epitaxial layer.
    Type: Grant
    Filed: August 2, 2010
    Date of Patent: July 23, 2013
    Assignee: OmniVision Technologies, Inc.
    Inventors: Vincent Venezia, Duli Mao, Hsin-Chih Tai, Yin Qian, Howard E. Rhodes
  • Patent number: 8492904
    Abstract: One aspect of the present invention is a semiconductor device including: a semiconductor substrate; a first wiring that is formed on the semiconductor substrate; a second wiring that is formed to cross over the first wiring with a space interposed therebetween at a cross portion in which the first wiring and the second wiring cross each other; a protective film that is formed on the semiconductor substrate to cover at least a part of the first wiring, the part being located under the second wiring in the cross portion; and an insulator film that is formed in an island shape on the protective film under the second wiring in the cross portion to be located between edges of the protective film and to cover the first wiring in the cross portion.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: July 23, 2013
    Assignee: Renesas Electronics Corporation
    Inventor: Akira Fujihara
  • Patent number: 8492186
    Abstract: The present invention is a method for producing a group III nitride semiconductor layer in which a single crystal group III nitride semiconductor layer (103) is formed on a substrate (101), the method including: a substrate processing step of forming, on the (0001) C-plane of the substrate (101), a plurality of convex parts (12) of surfaces (12c) not parallel to the C-plane, to thereby form, on the substrate, an upper surface (10) that is composed of the convex parts (12) and a flat surface (11) of the C-plane; and an epitaxial step of epitaxially growing the group III nitride semiconductor layer (103) on the upper surface (10), to thereby embed the convex parts (12) in the group III nitride semiconductor layer (103).
    Type: Grant
    Filed: December 19, 2007
    Date of Patent: July 23, 2013
    Assignee: Toyoda Gosei Co., Ltd.
    Inventors: Hironao Shinohara, Hiromitsu Sakai
  • Patent number: 8492868
    Abstract: A method, integrated circuit and design structure includes a silicon substrate layer having trench structures and an ion impurity implant. An insulator layer is positioned on and contacts the silicon substrate layer. The insulator layer fills the trench structures. A circuitry layer is positioned on and contacts the buried insulator layer. The circuitry layer comprises groups of active circuits separated by passive structures. The trench structures are positioned between the groups of active circuits when the integrated circuit structure is viewed from the top view. Thus, the trench structures are below the passive structures and are not below the groups of circuits when the integrated circuit structure is viewed from the top view.
    Type: Grant
    Filed: August 2, 2010
    Date of Patent: July 23, 2013
    Assignee: International Business Machines Corporation
    Inventors: Alan B. Botula, Alvin J. Joseph, James A. Slinkman, Randy L. Wolf
  • Patent number: 8492764
    Abstract: A light-emitting device in which plural kinds of circuits are formed over one substrate and plural kinds of thin film transistors in accordance with characteristics of the plural kinds of circuits are included. An inverted-coplanar thin film transistor including an oxide semiconductor layer which overlaps a source and drain electrode layers is used as a thin film transistor for a pixel, a channel-stop thin film transistor is used as a thin film transistor for a driver circuit, and a color filter layer is provided between the thin film transistor for a pixel and a light-emitting element so as to overlap the light-emitting element which is electrically connected to the thin film transistor for a pixel.
    Type: Grant
    Filed: August 2, 2010
    Date of Patent: July 23, 2013
    Assignee: Semicondcutor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Masayuki Sakakura, Junichiro Sakata, Masashi Tsubuku, Kengo Akimoto, Miyuki Hosoba, Yoshiaki Oikawa
  • Patent number: 8487370
    Abstract: A semiconductor device includes a semiconductor body including a trench with first and second opposing sidewalls. A first electrode is arranged in a lower portion of the trench and a second electrode in an upper portion of the trench. A dielectric structure is arranged in the trench, including a first portion between the electrodes. The first portion includes, in sequence along a lateral direction from the first sidewall to the second sidewall, a first part including a first dielectric material, a second part including a second dielectric material selectively etchable to the first dielectric material, a third part including the first dielectric material, the first dielectric material of the third part being continuously arranged along a vertical direction from a top side of the first electrode to a bottom side of the second electrode, a fourth part including the second dielectric material and a fifth part including the first dielectric material.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: July 16, 2013
    Assignee: Infineon Technologies Austria AG
    Inventors: Oliver Blank, Ralf Siemieniec, Martin Poelzl, Maximilian Roesch
  • Patent number: 8466068
    Abstract: The present invention provides systems, apparatus, and methods for forming three dimensional memory arrays using a multi-depth imprint lithography mask and a damascene process. An imprint lithography mask for manufacturing a memory layer in a three dimensional memory is described. The mask includes a translucent material formed with features for making an imprint in a transfer material to be used in a damascene process, the mask having a plurality of imprint depths. At least one imprint depth corresponds to trenches for forming memory lines and at least one depth corresponds to holes for forming vias. Numerous other aspects are disclosed.
    Type: Grant
    Filed: December 31, 2007
    Date of Patent: June 18, 2013
    Assignee: SanDisk 3D LLC
    Inventor: Roy E. Scheuerlein
  • Patent number: 8467539
    Abstract: A headset including an earcup having a front opening adapted to be adjacent to the ear of a user, the earcup extending in a radial direction and an axial direction and defining an earcup volume; and a bellows cushion extending around the periphery of the front opening of the earcup and sized to engage the ear of the user, the bellows cushion comprising a plurality of folded segments located at an outer radial portion of the bellows cushion, and configured to be substantially compliant along an axial direction.
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: June 18, 2013
    Assignee: Bose Corporation
    Inventors: Roman Sapiejewski, Eric M. Wallace
  • Patent number: 8445887
    Abstract: A nonvolatile programmable switch device using a phase-change memory device and a method of manufacturing the same are provided. The switch device includes a substrate, a first metal electrode layer disposed on the substrate and including a plurality of terminals, a phase-change material layer disposed on the substrate and having a self-heating channel structure, the phase-change material layer having a plurality of introduction regions electrically contacting the terminals of the first metal electrode layer and a channel region interposed between the introduction regions, an insulating layer disposed on the first metal electrode layer and the phase-change material layer, a via hole disposed on the first metal electrode layer, and a second metal electrode layer disposed to fill the via hole.
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: May 21, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Sung Min Yoon, Byoung Gon Yu, Soon Won Jung, Seung Yun Lee, Young Sam Park, Joon Suk Lee