Abstract: A display device includes: a flexible substrate; a plurality of conductive lines on the flexible substrate; a thin film transistor connected to the plurality of conductive lines; and an organic light emitting element connected to the thin film transistor. As a curvature of an area of the flexible substrate increases, a width or a thickness of each of the conductive lines increases.
Type:
Grant
Filed:
September 21, 2018
Date of Patent:
August 31, 2021
Assignee:
Samsung Display Co., Ltd.
Inventors:
Minsung Kim, Hyunwoo Koo, Tae Woong Kim, Jin Hwan Choi, Hayk Kachatryan
Abstract: Heterostructures containing one or more sheets of positive charge, or alternately stacked AlGaN barriers and AlGaN wells with specified thickness are provided. Also provided are multiple quantum well structures and p-type contacts. The heterostructures, the multiple quantum well structures and the p-type contacts can be used in light emitting devices and photodetectors.
Abstract: A system in package and method for making a system in package. A plurality of passive devices are coupled to an interposer. A molding compound envelopes the plurality of passive devices and defines a platform having a substantially planar surface. The interposer is coupled to a substrate. A plurality of integrated circuit dies are coupled in a stack to the planar surface.
Abstract: An image sensor having pixels that include two patterned semiconductor layers. The top patterned semiconductor layer contains the photoelectric elements of pixels having substantially 100% fill-factor. The bottom patterned semiconductor layer contains transistors for detecting, resetting, amplifying and transmitting signals charges received from the photoelectric elements. The top and bottom patterned semiconductor layers may be separated from each other by an interlayer insulating layer that may include metal interconnections for conducting signals between devices formed in the patterned semiconductor layers and from external devices.
Abstract: Embodiments of the invention address several issues and problems associated with etching of dielectric materials for BEOL applications. According to one embodiment, the method includes providing a patterned substrate containing a dielectric material, exposing the substrate to a gas phase plasma to functionalize a surface of the dielectric material, exposing the substrate to a silanizing reagent that reacts with the functionalized surface of the dielectric material to form a dielectric film, and sequentially repeating the exposing steps at least once to increase a thickness of the dielectric film. According to one embodiment, the dielectric material may be a porous low-k material, and the dielectric film seals the pores on a surface of the porous low-k material.
Abstract: Implementations of semiconductor packages may include: a wafer having a first side and a second side, a solder pad coupled to the first side of the wafer, a through silicon via (TSV) extending from the second side of the wafer to the solder pad a metal layer around the walls of the TSV, and a low melting temperature solder in the TSV. The low melting temperature solder may also be coupled to the metal layer. The low melting temperature solder may couple to the solder pad through an opening in a base layer metal of the solder pad.
Abstract: A source/drain region of a semiconductor device is formed using an epitaxial growth process. In an embodiment a first step comprises forming a bulk region of the source/drain region using a first precursor, a second precursor, and an etching precursor. A second step comprises cleaning the bulk region with the etchant along with introducing a shaping dopant to the bulk region in order to modify the crystalline structure of the exposed surfaces. A third step comprises forming a finishing region of the source/drain region using the first precursor, the second precursor, and the etching precursor.
Abstract: A structure includes a metal layer and a plurality of interconnected unit cells forming a lattice contained at least partly within the metal layer, including at least a first unit cell formed of first interconnected graphene tubes, and a second unit cell formed of second interconnected graphene tubes, wherein the metal layer protrudes through holes within the lattice.
Type:
Grant
Filed:
December 26, 2018
Date of Patent:
July 13, 2021
Assignee:
TEXAS INSTRUMENTS INCORPORATED
Inventors:
Luigi Colombo, Archana Venugopal, Benjamin Stassen Cook, Nazila Dadvand
Abstract: A method for manufacturing a semiconductor device includes forming a SiN film on a substrate. Plasma treatment is applied to the SiN film using a He-containing gas.
Type:
Grant
Filed:
December 12, 2017
Date of Patent:
June 15, 2021
Assignee:
ASM IP Holding B.V.
Inventors:
Toshiaki Iijima, Masaki Tokunaga, Jun Kawahara
Abstract: In an example, a method may include removing a material from a structure to form an opening in the structure, exposing a residue, resulting from removing the material, to an alcohol gas to form a volatile compound, and removing the volatile compound by vaporization. The structure may be used in semiconductor devices, such as memory devices.
Abstract: A plate varactor includes a dielectric substrate and a first electrode embedded in a surface of the substrate. A capacitor dielectric layer is disposed over the first electrode, and a layer of graphene is formed over the dielectric layer to contribute a quantum capacitance component to the dielectric layer. An upper electrode is formed on the layer of graphene. Other embodiments and methods for fabrication are also included.
Type:
Grant
Filed:
September 16, 2019
Date of Patent:
June 1, 2021
Assignee:
INTERNATIONAL BUSINESS MACHINES CORPORATION
Inventors:
Zhihong Chen, Shu-Jen Han, Siyuranga O. Koswatta, Alberto Valdes Garcia
Abstract: A method of making a thin film transistor, the method includes: providing a semiconductor layer; arranging a first photoresist layer, a nanowire structure, a second photoresist layer on the semiconductor layer, wherein the nanowire structure includes a single nanowire; forming one opening in the first photoresist layer and the second photoresist layer to form an exposed surface, wherein a part of the nanowire is exposed and suspended in the opening; depositing a conductive film layer on the exposed surface using the nanowire structure as a mask, wherein the conductive film layer defines a nano-scaled channel, and the conductive film layer is divided into two regions, one region is used as a source electrode, and the other region is used as a drain electrode; forming an insulating layer on the semiconductor layer to cover the source electrode and the drain electrode, and locating a gate electrode on the insulating layer.
Type:
Grant
Filed:
April 18, 2019
Date of Patent:
May 18, 2021
Assignees:
Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
Inventors:
Mo Chen, Qun-Qing Li, Li-Hui Zhang, Xiao-Yang Xiao, Jin Zhang, Shou-Shan Fan
Abstract: A memory layout structure, which is provided with multiple source lines between active areas, each source line has multiple branches electrically connecting with the active areas at opposite sides in alternating arrangement. Multiple word lines traverse through the active areas to form transistors. Multiple storage units are disposed between the word lines on the active areas in staggered array arrangement, and multiple bit lines electrically connect with all storage units on a corresponding active area, wherein each storage cell includes one of the storage unit, two of the transistors respectively at both sides of the storage unit, and two branches of the source line.
Abstract: A bonded structure is disclosed. The bonded structure includes a first element and a second element that is bonded to the first element along a bonding interface. The bonding interface has an elongate conductive interface feature and a nonconductive interface feature. The bonded structure also includes an integrated device that is coupled to or formed with the first element or the second element. The elongate conductive interface feature has a recess through a portion of a thickness of the elongate conductive interface feature. A portion of the nonconductive interface feature is disposed in the recess.
Type:
Grant
Filed:
December 28, 2018
Date of Patent:
May 11, 2021
Assignee:
Invensas Bonding Technologies, Inc.
Inventors:
Rajesh Katkar, Laura Wills Mirkarimi, Bongsub Lee, Gaius Gillman Fountain, Jr., Cyprian Emeka Uzoh
Abstract: A bipolar transistor is supported by a single-crystal silicon substrate including a collector connection region. A first epitaxial region forms a collector region doped with a first conductivity type on the collector connection region. The collector region includes a counter-doped region of a second conductivity type. A second epitaxial region forms a base region of a second conductivity type on the first epitaxial region. Deposited semiconductor material forms an emitter region of the first conductivity type on the second epitaxial region. The collector region, base region and emitter region are located within an opening formed in a stack of insulating layers that includes a sacrificial layer. The sacrificial layer is selectively removed to expose a side wall of the base region. Epitaxial growth from the exposed sidewall forms a base contact region.
Abstract: A display apparatus includes a substrate including a display area where a plurality of pixels are provided and a non-display area surrounding the display area, an encapsulation layer including an inorganic layer and an organic layer and covering the display area, a dam disposed in the non-display area to surround the display area and to block a flow of the organic layer, a pad disposed in one edge of the non-display area and spaced apart from the dam in the non-display area, an auxiliary buffer layer spaced apart from the dam and disposed in the non-display area to overlap an end of the inorganic layer, a power auxiliary line disposed between the dam and the auxiliary buffer layer and electrically connected to the pad to receive a voltage from the pad, and a crack detection line spaced apart from the power auxiliary line and electrically connected to the pad.
Abstract: Provided is a semiconductor device manufacturing method which can suppress the occurrence of positional deviation or inclination of a semiconductor element when the semiconductor element is fixed so as to be sandwiched-between two insulating substrates. The semiconductor device manufacturing method includes: obtaining a laminated body in which a semiconductor element is temporarily adhered on a first electrode formed on a first insulating substrate with a first pre-sintering layer sandwiched therebetween; temporarily adhering the semiconductor element on a second electrode formed on a second insulating substrate with a second pre-sintering layer sandwiched therebetween, the second pre-sintering layer being provided on a side opposite to the first pre-sintering layer, to obtain a semiconductor device precursor; and simultaneously heating the first pre-sintering layer and the second pre-sintering layer, to bond the semiconductor element to the first electrode and the second electrode.
Abstract: A semiconductor package includes a first interconnect substrate on a first redistribution substrate and having a first opening penetrating the first interconnect substrate. A first semiconductor chip is on the first redistribution substrate and the first opening of the first interconnect substrate. A second redistribution substrate is on the first interconnect substrate and the first semiconductor chip. A second interconnect substrate is on the second redistribution substrate and has a second opening penetrating the second interconnect substrate. A second semiconductor chip is on the second redistribution substrate and in the second opening of the second interconnect substrate.
Abstract: Embodiments of the present disclosure provide a flexible display panel, a method of manufacturing the flexible display panel, and a flexible display apparatus. The flexible display panel comprises: a reinforced insulating layer of an inorganic material, wherein the reinforced insulating layer comprises a reinforced region, and is formed with a reinforcing hole in the reinforced region; an organic material filled in the reinforcing hole; and at least one insulating film which is disposed on at least one of both sides of the reinforced insulating layer and which is in contact with the reinforced insulating layer at least in the reinforced region.
Abstract: A MOS device of an IC includes pMOS and nMOS transistors. The MOS device further includes a first Mx layer interconnect extending in a first direction and coupling the pMOS and nMOS transistor drains together, and a second Mx layer interconnect extending in the first direction and coupling the pMOS and nMOS transistor drains together. The first and second Mx layer interconnects are parallel. The MOS device further includes a first Mx+1 layer interconnect extending in a second direction orthogonal to the first direction. The first Mx+1 layer interconnect is coupled to the first Mx layer interconnect and the second Mx layer interconnect. The MOS device further includes a second Mx+1 layer interconnect extending in the second direction. The second Mx+1 layer interconnect is coupled to the first Mx layer interconnect and the second Mx layer interconnect. The second Mx+1 layer interconnect is parallel to the first Mx+1 layer interconnect.