Patents Examined by Caridad M. Everhart
  • Patent number: 7838984
    Abstract: An adhesive tape 101 electrically connecting conductive components includes a resin layer 132 containing a thermosetting resin, a solder powder 103 and a curing agent. The solder powder 103 and the curing agent reside in the resin layer 132, the curing temperature T1 of the resin layer 132 and the melting point T2 of the solder powder 103 satisfy T1?T2+20° C., wherein the resin layer 132 shows a melt viscosity of 50 Pa·s or above and 5000 Pa·s or below, at the melting point T2 of the solder powder 103.
    Type: Grant
    Filed: April 25, 2007
    Date of Patent: November 23, 2010
    Assignee: Sumitomo Bakelite Company, Ltd.
    Inventors: Satoru Katsurayama, Tomoe Yamashiro, Tetsuya Miyamoto
  • Patent number: 7838436
    Abstract: Formation of a bottom electrode for an MTJ device on a silicon nitride substrate is facilitated by including a layer of ruthenium near the silicon nitride surface. The ruthenium is a good electrical conductor and it responds differently from Ta and TaN to certain etchants. Adhesion to SiN is enhanced by using a TaN/NiCr bilayer as “glue”. Thus, said included layer of ruthenium may be used as an etch stop layer during the etching of Ta and/or TaN while the latter materials may be used to form a hard mask for etching the ruthenium without significant corrosion of the silicon nitride surface.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: November 23, 2010
    Assignee: MagIC Technologies, Inc.
    Inventors: Rongfu Xiao, Cheng T. Horng, Ru-Ying Tong, Chyu-Jinh Torng, Tom Zhong, Witold Kula, Terry Kin Ting Ko, Wei Cao, Wai-Ming J. Kan, Liubo Hong
  • Patent number: 7838337
    Abstract: A semiconductor device is fabricated by providing a carrier for supporting the semiconductor device. A first semiconductor die is mounted to the carrier. The first semiconductor die has a contact pad. A first dummy die is mounted to the carrier. The first dummy die has a through-silicon via (TSV). The first semiconductor die and the first dummy die are encapsulated using a wafer molding material. A first interconnect structure is formed over the first semiconductor die and the first dummy die. The first interconnect structure is connected to the contact pad of the first semiconductor die and the TSV of the first dummy die. The carrier is removed and a second interconnect structure is formed over the first semiconductor die and the first dummy die. The second interconnect structure is connected to the TSV of the first dummy die. A semiconductor package is connected to the second interconnect structure.
    Type: Grant
    Filed: December 1, 2008
    Date of Patent: November 23, 2010
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Pandi Chelvam Marimuthu, Nathapong Suthiwongsunthorn, Il Kwon Shim, Kock Liang Heng
  • Patent number: 7838388
    Abstract: Provided is a method for producing an SOI substrate having a thick-film SOI layer, in which an ion-implanted layer is formed by implanting at least one kind of ion of hydrogen ion and a rare gas ion into a surface of a bond wafer, an SOI substrate having an SOI layer is produced by, after the ion-implanted surface of the bond wafer and a surface of a base wafer are bonded together via an oxide film, delaminating the bond wafer along the ion-implanted layer, heat treatment is performed on the SOI substrate having the SOI layer in a reducing atmosphere containing hydrogen or an atmosphere containing hydrogen chloride gas, and, after the surface of the SOI layer is polished by CMP, a silicon epitaxial layer is grown on the SOI layer of the SOI substrate.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: November 23, 2010
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Satoshi Oka, Nobuhiko Noto
  • Patent number: 7838351
    Abstract: A thin film transistor manufacturing method includes the steps of: forming a gate electrode, gate insulating film and amorphous silicon film in succession on an insulating substrate; forming a channel protective film only in the region which will serve as a channel region of the amorphous silicon film; and forming an n-plus silicon film and metal layer on top of the channel protective film and amorphous silicon film in succession. The method further includes the step of patterning the amorphous silicon film and n-plus silicon film to selectively leave the region associated with source and drain electrodes, using the channel protective film as an etching stopper to selectively remove the region of the n-plus silicon film and metal layer associated with the channel region so as to form source and drain regions from the n-plus silicon film and also form source and drain electrodes from the metal layer.
    Type: Grant
    Filed: June 11, 2008
    Date of Patent: November 23, 2010
    Assignee: Sony Corporation
    Inventors: Motohiro Toyota, Toshiaki Arai
  • Patent number: 7824960
    Abstract: A method of manufacturing a plurality of stacked die semiconductor packages, including: placing a phase change material between a top surface of a substrate and a bottom surface of a first die; placing a phase change material between a top surface of the first die and a bottom surface of a second die; wherein the first and second dies have a plurality of conductive protrusions on the bottom surfaces of the dies; wherein the first die has a plurality of conductive vias extending from its conductive protrusions, through the first die, to the top surface of the first die; wherein the conductive vias of said first die are in alignment with the conductive protrusions of the second die; and heating the dies and the substrate to cause the second die to become electrically interconnected to the first die and the first die to become electrically connected to the substrate.
    Type: Grant
    Filed: May 21, 2008
    Date of Patent: November 2, 2010
    Assignee: United Test and Assembly Center Ltd.
    Inventors: Liu Hao, Ravi Kanth Kolan
  • Patent number: 7816243
    Abstract: A semiconductor device and a method of fabricating the same are described. A substrate having a PMOS area and an NMOS area is provided. A high-k layer is formed on the substrate. A first cap layer is formed on the high-k layer in the PMOS area, and a second cap layer is formed on the high-k layer in the NMOS area, wherein the first cap layer is different from the second cap layer. A metal layer and a polysilicon layer are sequentially formed on the first and second cap layers. The polysilicon layer, the metal layer, the first cap layer, the second cap layer and the high-k layer are patterned to form first and second gate structures respectively in the PMOS and NMOS areas. First source/drain regions are formed in the substrate beside the first gate structure. Second source/drain regions are formed in the substrate beside the second gate structure.
    Type: Grant
    Filed: February 18, 2009
    Date of Patent: October 19, 2010
    Assignee: United Microelectronics Corp.
    Inventors: Chun-Fei Chuang, Chien-Ting Lin, Che-Hua Hsu, Shao-Hua Hsu, Cheng-I Lin
  • Patent number: 7807552
    Abstract: A method of inspecting defects in a semiconductor device includes forming a test pattern in a scribe lane region of a semiconductor substrate. The test pattern includes a second conductive layer formed on an isolation layer of the semiconductor substrate. Further, the method includes measuring a current flowing between the second conductive layer and the semiconductor substrate by applying a first voltage between the second conductive layer and the semiconductor substrate. Defects formed in the isolation layer can be inspected during a semiconductor manufacturing process. Accordingly, the yield of semiconductor devices can be improved with the inspection results.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: October 5, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Young Bok Lee
  • Patent number: 7803707
    Abstract: The present invention provides metal silicide nanowires, including metallic, semiconducting, and ferromagnetic semiconducting transition metal silicide nanowires. The nanowires are grown using either chemical vapor deposition (CVD) or chemical vapor transport (CVT) on silicon substrates covered with a thin silicon oxide film, the oxide film desirably having a thickness of no greater than about 5 nm and, desirably, no more than about 2 nm (e.g., about 1-2 nm). The metal silicide nanowires and heterostructures made from the nanowires are well-suited for use in CMOS compatible wire-like electronic, photonic, and spintronic devices.
    Type: Grant
    Filed: August 17, 2006
    Date of Patent: September 28, 2010
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Song Jin, Andrew L. Schmitt, Yipu Song
  • Patent number: 7799706
    Abstract: A neutral beam-assisted atomic layer chemical vapor deposition (ALCVD) apparatus is provided for uniformly depositing an oxide layer filling a planarization layer or a trench to increase uniformity and density of the oxide layer using neutral beams generated by a neutral beam generator without a seam or void occurring in an atomic layer deposition (ALD) or ALD-like chemical vapor deposition (CVD) process, thereby solving problems on the void or seam and low density occurring when a high-density planarization layer or a shallow trench having a width of 65 nm or less is formed, and improving a next generation oxide layer isolation process.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: September 21, 2010
    Assignee: Sungkyunkwan University Foundation for Corporate Collaboration
    Inventors: Geun-young Yeom, Byoung-jae Park, Sung-woo Kim, Jong-tae Lim
  • Patent number: 7799639
    Abstract: Fabrication of a nonvolatile memory device includes sequentially forming a tunnel oxide layer, a first conductive layer, and a nitride layer on a semiconductor substrate. A stacked pattern is formed from the tunnel oxide layer, the first conductive layer, and the nitride layer and a trench is formed in the semiconductor substrate adjacent to the stacked pattern. An oxidation process is performed to form a sidewall oxide layer on a sidewall of the trench and the first conductive layer. Chlorine is introduced into at least a portion of the stacked pattern subjected to the oxidation process. Introducing Cl into the stacked pattern may at least partially cure defects that are caused therein during fabrication of the structure.
    Type: Grant
    Filed: May 20, 2008
    Date of Patent: September 21, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-jin Noh, Si-Young Choi, Bon-young Koo, Ki-hyun Hwang, Chul-sung Kim, Sung-kweon Baek
  • Patent number: 7795144
    Abstract: A method for forming an electrode structure in a light emitting device is disclosed. The method includes the steps of: forming a mask material layer having an opening; depositing a first material layer on the mask material layer and on a portion of a compound semiconductor layer exposed through the bottom of the opening by a physical vapor deposition method reducing the particle density so that the mean free path for collision is long; depositing a second material layer on the first material layer on the mask material layer, on the first material layer deposited on the bottom of the opening, and on a portion of the compound semiconductor layer exposed through the bottom of the opening by a vapor deposition method other than the physical vapor deposition method; and removing the mask material layer and the first and second material layers deposited on the mask material layer.
    Type: Grant
    Filed: May 27, 2008
    Date of Patent: September 14, 2010
    Assignee: Sony Corporation
    Inventor: Naoki Hirao
  • Patent number: 7790610
    Abstract: Methods of fabricating a memory unit are provided including forming a plurality of first nanowire structures, each of which includes a first nanowire extending in a first direction parallel to the first substrate and a first electrode layer enclosing the first nanowire, on a first substrate. The first electrode layers are partially removed to form first electrodes beneath the first nanowires. A first insulation layer filling up spaces between structures, each of which includes the first nanowire and the first electrode, is formed on the first substrate. A second electrode layer is formed on the first nanowires and the first insulation layer. A plurality of second nanowires is formed on the second electrode layer, each of which extends in a second direction perpendicular to the first direction. The second electrode layer is partially etched using the second nanowires as an etching mask to form a plurality of second electrodes.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: September 7, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Moon-Sook Lee, Byeong-Ok Cho, Man-Hyoung Ryoo, Takahiro Yasue
  • Patent number: 7790634
    Abstract: Methods of making a silicon oxide layer on a substrate are described. The methods may include forming the silicon oxide layer on the substrate in a reaction chamber by reacting an atomic oxygen precursor and a silicon precursor and depositing reaction products on the substrate. The atomic oxygen precursor is generated outside the reaction chamber. The methods also include heating the silicon oxide layer at a temperature of about 600° C. or less, and exposing the silicon oxide layer to an induced coupled plasma. Additional methods are described where the deposited silicon oxide layer is cured by exposing the layer to ultra-violet light, and also exposing the layer to an induced coupled plasma.
    Type: Grant
    Filed: May 25, 2007
    Date of Patent: September 7, 2010
    Assignee: Applied Materials, Inc
    Inventors: Jeffrey C. Munro, Srinivas D. Nemani
  • Patent number: 7790633
    Abstract: A silicon dioxide-based dielectric layer is formed on a substrate surface by a sequential deposition/anneal technique. The deposited layer thickness is insufficient to prevent substantially complete penetration of annealing process agents into the layer and migration of water out of the layer. The dielectric layer is then annealed, ideally at a moderate temperature, to remove water and thereby fully densify the film. The deposition and anneal processes are then repeated until a desired dielectric film thickness is achieved.
    Type: Grant
    Filed: September 11, 2006
    Date of Patent: September 7, 2010
    Assignee: Novellus Systems, Inc.
    Inventors: Raihan M. Tarafdar, George D. Papasouliotis, Ron Rulkens, Dennis M. Hausmann, Jeff Tobin, Adrianne K. Tipton, Bunsen Nie
  • Patent number: 7786016
    Abstract: A method of substantially uniformly removing silicon oxide is disclosed. The silicon oxide to be removed includes at least one cavity therein or more than one density or strain therein. The silicon oxide having at least one cavity or more than one density or strain is exposed to a gaseous mixture of NH3 and HF and heated, to substantially uniformly remove the silicon oxide. A method of removing an exposed sacrificial layer without substantially removing exposed isolation regions using the gaseous mixture of NH3 and HF and heat is also disclosed, as is an intermediate semiconductor device structure that includes a semiconductor substrate, a sacrificial layer overlying the semiconductor substrate, a diffusion barrier overlying the sacrificial layer, and exposed isolation regions.
    Type: Grant
    Filed: January 11, 2007
    Date of Patent: August 31, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Nishant Sinha, Gurtej S. Sandhu, Joseph N. Greeley
  • Patent number: 7781297
    Abstract: The present invention discloses a semiconductor device and a method of manufacture thereof. The present invention prevents from leaning or collapsing in the subsequent dip-out process by making the bottom plate of adjacent capacitors to be connected each other and supported each other in patterning the conductive layer for the bottom plate of capacitor.
    Type: Grant
    Filed: May 2, 2008
    Date of Patent: August 24, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Won Sun Seo
  • Patent number: 7781321
    Abstract: The present invention, in one embodiment provides a method of forming a semiconducting device including providing a substrate including a semiconducting surface, the substrate comprising a first device region and a second device region; forming a high-k dielectric layer atop the semiconducting surface of the substrate; forming a block mask atop the second device region of the substrate, wherein the first device region of the substrate is exposed; forming a first metal layer atop the high-k dielectric layer present in the first device region of the substrate; removing the block mask to expose a portion of the high-k dielectric layer in the first device region of the substrate; forming a second metal layer atop the portion of the high-k dielectric layer in the second device region and atop the first metal in the first device region of the substrate; and forming gate structures in the first and second device regions of the substrate.
    Type: Grant
    Filed: May 9, 2008
    Date of Patent: August 24, 2010
    Assignee: International Business Machines Corporation
    Inventors: Jeffrey P. Gambino, Michael P. Chudzik, Renee T. Mo
  • Patent number: 7781238
    Abstract: A method for making a testable sensor assembly is provided. The method includes forming a first sensor array on a first substrate having a first side and a second side, wherein the first sensor array is formed on the first side of the first substrate, coupling a first semiconductor wafer having a first side and a second side to the first sensor array, wherein the first side of the first semiconductor wafer is coupled to the first sensor array, thinning one of the second side of the first substrate or the second side of the first semiconductor wafer, and testing the first sensor array to identify operational and non-operational units in the testable sensor assembly before integration of the sensor assembly with interface electronics.
    Type: Grant
    Filed: December 6, 2007
    Date of Patent: August 24, 2010
    Inventors: Robert Gideon Wodnicki, Stacey Joy Kennerly, Wei-Cheng Tian, Kevin Matthew Durocher, David Martin Mills, Charles Gerard Woychik, Lowell Scott Smith
  • Patent number: 7781352
    Abstract: A method of forming an inorganic silazane-based dielectric film includes: introducing a gas constituted by Si and H and a gas constituted by N and optionally H into a reaction chamber where an object is placed; controlling a temperature of the object at ?50° C. to 50° C.; and depositing by plasma reaction a film constituted by Si, N, and H containing inorganic silazane bonds.
    Type: Grant
    Filed: June 6, 2007
    Date of Patent: August 24, 2010
    Assignee: ASM Japan K.K.
    Inventors: Atsuki Fukazawa, Nobuo Matsuki, Jeongseok Ha