Patents Examined by Carolyn Pehlke
  • Patent number: 11612376
    Abstract: Provided is a non-invasive system and method of determining muscle tissue size based on image processing. The method includes receiving at least one ultrasound scan image of at least a portion of a skin layer as disposed above one or more additional tissue layers, the image provided by a plurality of pixels. The method continues by introducing noise into the pixels of the image and thresholding the pixels of the image to provide a binary image having a plurality of structural elements of different sizes. The method continues with morphing the structural elements of the binary image to remove small structural elements and connect large structural elements. With this resulting image, the method distinguishes muscle tissue from remaining elements and determines the muscle tissue size. Associated apparatuses and computer program products are also disclosed.
    Type: Grant
    Filed: April 19, 2021
    Date of Patent: March 28, 2023
    Assignee: MUSCLESOUND, INC.
    Inventors: Pierre Sarnow, Stephen S. Kurtz, Andrew D. Jackson, Wayne Phillips
  • Patent number: 11607184
    Abstract: Systems and methods relate to multi-modal imaging of tissue combined with highly focused radiation interventions. The system is a portable multimodal imaging unit that integrates imaging and image analysis. The system can be retrofitted to use with any commercial radiation therapy machine. In one aspect, a system integrates various imaging modalities into a single, coordinated structure. The system integrates X-ray and cone beam computed tomography (CBCT), optical imaging (such as bioluminescent imaging (BLI), fluorescence tomography (FT)), and positron emission tomography (PET) imaging in a single, self-contained structure.
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: March 21, 2023
    Assignees: City of Hope, The Regents of the University of California
    Inventors: Susanta K. Hui, Gultekin Gulsen, Farouk Nouizi
  • Patent number: 11604236
    Abstract: An active shield magnetometry system comprises at least one magnetic field actuator configured for generating an actuated magnetic field that at least partially cancels an outside magnetic field, thereby yielding a total residual magnetic field. The active shield magnetometry system further comprises a plurality of magnetometers respectively configured for measuring the total residual magnetic field and outputting a plurality of total residual magnetic field measurements. The active shield magnetometry system further comprises at least one feedback control loop comprising at least one optimal linear controller configured for controlling the actuated magnetic field at least partially based on at least one of the plurality of total residual magnetic field measurements respectively output by at least one of the plurality of magnetometers.
    Type: Grant
    Filed: January 27, 2021
    Date of Patent: March 14, 2023
    Assignee: HI LLC
    Inventors: Benjamin Shapiro, Ricardo Jimenez-Martinez, Julian Kates-Harbeck
  • Patent number: 11596389
    Abstract: A method for imaging a volume within a patient volume is provided. The method includes generating a first signal and a second signal, directing the first signal and the second signal to a spot in the patient volume; receiving a first response signal and a second response signal from the spot in the patient volume; providing a first image from of the patient volume using the first response signal; providing a second image from the patient volume using the second response signal; and combining the first image and the second image to form a composite image. The method includes receiving multiple images at multiple frequency ranges; selecting a region of interest including the plurality of images; selecting multiple border lines separating the region of interest into multiple sub-regions; selecting data from an image in a sub-region; and forming an image in the region of interest.
    Type: Grant
    Filed: August 30, 2019
    Date of Patent: March 7, 2023
    Assignee: PHILIPS IMAGE GUIDED THERAPY CORPORATION
    Inventor: Anuja Nair
  • Patent number: 11583186
    Abstract: The present invention relates to a device for determining information relating to a suspected occluding structure. It is described to provide (210) a spectral resolving unit with at least one broadband radiation. The at least one broadband radiation comprises a first broadband radiation acquired from a region of interest within a vascular structure. An occluding structure is suspected to be located within the region of interest and wherein the first broadband radiation is associated with the suspected occluding structure. At least one spectrally resolved data set is determined (220) on the basis of the at least one broadband radiation, wherein the at least one spectrally resolved data set comprises a first spectrally resolved data set determined on the basis of the first broadband radiation. A processing unit is provided (230) with the at least one spectrally resolved data set on the basis of the at least one broadband radiation.
    Type: Grant
    Filed: January 15, 2018
    Date of Patent: February 21, 2023
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Manfred Mueller, Arjen Van Der Horst, Gerhardus Wilhelmus Lucassen, Bernardus Hendrikus Wilhelmus Hendriks, Charles Frederik Sio
  • Patent number: 11583253
    Abstract: A dual frequency transducer array includes one or more low frequency transducer arrays and a high frequency transducer array. Unfocused ultrasound such as plane waves are transmitted by the one or more low frequency transducer arrays in a number of different directions into an imaging region of the high frequency transducer array. High frequency echo signals produced by excited contrast agent in the imaging region are received by the high frequency transducer array to produce a contrast agent image. In another embodiment, the high frequency transducer produces unfocused ultrasound to excite the contrast agent in the imaging region and the low frequency transducer(s) receives low frequency echo signals from the excited contrast agent. A tissue image is created from echo signals received by the high or low frequency transducer. Echo data from the tissue image and the contrast agent image are combined to produce a combined tissue/contrast agent image.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: February 21, 2023
    Assignees: FUJIFILM SONOSITE, INC., SUNNYBROOK RESEARCH INSTITUTE
    Inventors: F. Stuart Foster, Desmond Hirson, Nicholas Christopher Chaggares, Emmanuel W. Cherin, Jianhua Yin, Jing Yang, Christine Demore
  • Patent number: 11576648
    Abstract: An ultrasound diagnostic apparatus 1 includes an image acquisition unit 8 that transmits an ultrasound beam from an ultrasound probe 18 to a subject to acquire an ultrasound image, an optic nerve recognition unit 9 that performs image analysis on the ultrasound image acquired by the image acquisition unit 8 to recognize an optic nerve of the subject, an optic nerve evaluation unit 10 that evaluates a shape of the optic nerve of the subject recognized by the optic nerve recognition unit 9 on the basis of an anatomical structure, and an operation guide unit 12 that guides a user to operate the ultrasound probe 18 so as to acquire an ultrasound image for measurement of the optic nerve of the subject on the basis of an evaluation result obtained by the optic nerve evaluation unit 10.
    Type: Grant
    Filed: July 28, 2020
    Date of Patent: February 14, 2023
    Assignee: FUJIFILM Corporation
    Inventor: Mitsuru Negishi
  • Patent number: 11576640
    Abstract: Embodiments discussed herein facilitate determination of risk of recurrence of atrial fibrillation (AF) after ablation based on fractal features. One example embodiment is configured to generate a binary mask of at least a portion of a CT scan of a heart of a patient with AF; compute one or more radiomic fractal-based features from at least one of the binary mask or the portion of the CT scan; provide the one or more radiomic fractal-based features to a trained machine learning (ML) classifier; and receive a prediction from the trained ML classifier of whether or not the AF will recur after AF ablation, wherein the prediction is based at least in part on the one or more radiomic fractal-based features.
    Type: Grant
    Filed: September 28, 2020
    Date of Patent: February 14, 2023
    Assignees: Case Western Reserve University, The Cleveland Clinic Foundation
    Inventors: Anant Madabhushi, Marjan Firouznia, Mina K. Chung, Albert Feeny
  • Patent number: 11577049
    Abstract: Devices, systems, and methods for catheterization through angionavigation, cardionavigation, or brain navigation to diagnose or treat diseased areas through direct imaging using tracking, such as radiofrequency, infrared, or ultrasound tracking, of the catheter through the patient's vascular anatomy. A steerable catheter with six degrees of freedom having at least a camera and fiber optic bundle, and one or more active or passive electromagnetic tracking sensors located on the catheter is guided through the vascular system under direct imaging. The direct imaging can be assisted with at least one of MRA imaging, CT angiography imaging, or 3DRA imaging as the roadmap acquired prior to or during 3D stereoangiovision. The system comprises RF transceivers to provide positioning information from the sensors, a processor executing navigation software to fuse the tracking information from the tracking sensors with the imaging roadmap, and a display to display the location of the catheter on the roadmap.
    Type: Grant
    Filed: July 11, 2019
    Date of Patent: February 14, 2023
    Assignee: Voxel Rad, Ltd.
    Inventors: Javad Rahimian, Mohammad Shenasa
  • Patent number: 11564750
    Abstract: A system for assisting guiding an endovascular instrument in vascular structures of an anatomical region of interest of a patient. This system includes an imaging device for capturing three-dimensional images of parts of the body of a patient, a programmable device and a viewing unit. The imaging device captures partially superposed fluoroscopic images of the region, and the programmable device forms a first augmented image, representative of a complete panorama of bones of the region, and cooperates with the imaging device to obtain a second augmented image including a representation of the vascular structures of the region. The imaging device captures a current fluoroscopic image of a part of the region, and the programmable device registers the current fluoroscopic image with respect to the first augmented image and locates and displays, on the viewing unit, an image region corresponding to the current fluoroscopic image in the second augmented image.
    Type: Grant
    Filed: June 5, 2018
    Date of Patent: January 31, 2023
    Assignee: THERENVA
    Inventors: Florent Lalys, Mathieu Colleaux, Vincent Durrmann, Antoine Lucas, Cemil Goksu
  • Patent number: 11564619
    Abstract: An MR Spectroscopy (MRS) system and approach is provided for measuring spectral information corresponding with propionic acid (PA), either alone or in combination with other measurements corresponding with other chemicals, to diagnose and/or monitor at least one of bacterial infection, such as associated with P. acnes, or conditions related thereto such as nociceptive pain associated with tissue acidity. An interfacing DDD-MRS signal processor receives output signals to produce a post-processed spectrum, with spectral regions corresponding with certain chemicals, including PA, then measured as biomarkers. A diagnostic processor derives a diagnostic value for each disc, and performs certain normalizations, based upon ratios of the spectral regions related to chemicals implicated in degenerative painful tissue pathology, such as PA and hypoxia markers of lactic acid (LA) and alanine (AL), and structural chemicals of proteoglycan (PG) and collagen or carbohydrate (CA).
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: January 31, 2023
    Assignees: ACLARION, INC., THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Jeffrey C. Lotz, James Clayton Peacock, III, David S. Bradford, Stefan Dudli, Sergey G. Magnitsky
  • Patent number: 11564648
    Abstract: Methods and systems are provided for adaptive scan control. In one embodiment, a method includes, upon an injection of a contrast agent, processing acquired projection data of a monitoring area of a subject to measure a contrast signal of the contrast agent, estimating two or more target times of the contrast agent at the monitoring area of the subject based on the contrast signal, and carrying out a contrast scan that includes a two or more acquisitions each performed at a respective target time.
    Type: Grant
    Filed: November 1, 2019
    Date of Patent: January 31, 2023
    Assignee: GE Precision Healthcare LLC
    Inventors: Michael Sarju Vaz, Nitya Talasila, Bradley Gabrielse, Ryan Forbes, David Joseph Pitterle
  • Patent number: 11564639
    Abstract: A method of generating corrected fluorescence data of concentrations of a targeted fluorophore in tissue of a subject includes administering first and second fluorescent contrast agents to the subject, the first contrast agent targeted to tissue of interest, the second agent untargeted. The tissue is illuminated with light of a first stimulus wavelength and first data is acquired at an appropriate emissions wavelength; the tissue is illuminated at a second stimulus wavelength and second data is acquired at a second emissions wavelength associated with the second agent, the first and second emissions wavelength differ. Difference data is generated by subtracting the second data from the first data. A system provides for stimulus and capture at multiple wavelengths, with image storage memory and subtraction code, to perform the method. Corrected data may form an fluorescence image, or is used to generate fluorescence tomographic images.
    Type: Grant
    Filed: February 13, 2014
    Date of Patent: January 31, 2023
    Assignee: THE TRUSTEES OF DARTMOUTH COLLEGE
    Inventors: Kenneth Tichauer, Robert W. Holt, Frederic Leblond, Pablo Valdes, Brian W. Pogue, Keith D. Paulsen, David W. Roberts
  • Patent number: 11559278
    Abstract: Systems, apparatuses, methods, and non-transitory computer-readable media for mapping a section of a vasculature of a subject are described herein, including moving a probe to a first position at a body of the subject adjacent the section of the vasculature; transmitting, by the probe, a first ultrasound beam into a first portion of the section of the vasculature through the body of the subject; receiving first ultrasound data including at least one imaging parameter of the first portion based on the first ultrasound beam; moving the probe to a second position at the body of the subject adjacent the section of the vasculature and different from the first position; transmitting, by the probe, a second ultrasound beam into a second portion of the section of the vasculature through the body of the subject; receiving second ultrasound data including the at least one imaging parameter of the second portion based on the second ultrasound beam; and constructing a map of the section of the vasculature based on the fi
    Type: Grant
    Filed: October 22, 2021
    Date of Patent: January 24, 2023
    Assignee: NovaSignal Corp.
    Inventors: Michael O'Brien, Mina Ranjbaran, Leo Petrossian, Robert Hamilton, Shankar Radhakrishnan, Corey M. Thibeault, Samuel G. Thorpe, Nicolas Canac
  • Patent number: 11559209
    Abstract: The present invention discloses means and methods for detecting irregularities in the cells throughout a healthy tissue. The method generally relates to cancer detection, diagnosis and treatment, and more specifically pertains to detection, diagnosis and treatment guidance of cancerous or precancerous conditions through the use of thermal imaging technology and analysis.
    Type: Grant
    Filed: January 9, 2022
    Date of Patent: January 24, 2023
    Assignee: H.T BIOIMAGING LTD.
    Inventors: Shani Toledano, Yoav Rosenbach, Moshe Tshuva, Sharon Gat
  • Patent number: 11559274
    Abstract: Imaging systems and methods for imaging assisted interventional procedure that receive images of a region of interest, that automatically detect in the images a contrast agent puff as it courses through the region of interest, and that generate a display including a video replay loop of contrast enhanced images based on the automatic detection of the contrast agent puff.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: January 24, 2023
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Vincent Maurice Andre Auvray, Pierre Henri Lelong, Raoul Florent
  • Patent number: 11547872
    Abstract: Systems and methods for treating a lung disease including capturing a first set of images of at least a portion of a lung displaying symptoms of a lung disease, generating a three dimensional model from the first set of images, locating a target nerve proximate the portion of the lung, generating a treatment plan, and non-invasively denervating the target nerve based on the treatment plan such that the function of the portion of the lung is affected.
    Type: Grant
    Filed: June 5, 2019
    Date of Patent: January 10, 2023
    Assignee: Covidien LP
    Inventor: Joshua B. Stopek
  • Patent number: 11534076
    Abstract: An image generation apparatus includes a plurality of electrodes, a plurality of sensor cells, and a controller configured to provide a tomographic image of a measurement object on the basis of an intensity of a magnetic field generated by an alternating current supplied via the plurality of electrodes. The controller acquires the intensity of the magnetic field via the plurality of sensor cells.
    Type: Grant
    Filed: February 25, 2015
    Date of Patent: December 27, 2022
    Assignee: SCHOOL JURIDICAL PERSON KITASATO INSTITUTE
    Inventors: Satoru Nebuya, Hiroshi Kumagai, Hideyuki Suzuki
  • Patent number: 11534131
    Abstract: A system for visualization and quantification of ultrasound imaging data according to embodiments of the present disclosure may include a display unit, and a processor communicatively coupled to the display unit and to an ultrasound imaging apparatus for generating an image from ultrasound data representative of a bodily structure and fluid flowing within the bodily structure. The processor may be configured to estimate axial and lateral velocity components of the fluid flowing within the bodily structure, determine a plurality of flow directions within the image based on the axial and lateral velocity components, differentially encode the flow directions based on flow direction angle to generate a flow direction map, and cause the display unit to concurrently display the image including the bodily structure overlaid with the flow direction map.
    Type: Grant
    Filed: May 25, 2018
    Date of Patent: December 27, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Hua Xie, Shiying Wang, Sheng-Wen Huang, Francois Guy Gerard Marie Vignon, Keith William Johnson, Liang Zhang, David Hope Simpson
  • Patent number: 11531125
    Abstract: The application provides a three-dimensionally heterogeneous PET system comprising at least two heterogeneous detector modules, each comprising at least two kinds of crystal strips closely arranged to form different detection performances levels for different kinds of crystal strips and same detection performances levels for same kind of crystal strips. Parameters of detection performances of crystal strips comprise energy resolution, density, size and light output, wherein different detection performances levels for crystal strips comprise one or more of parameters of detection performances of crystal strips being in different levels. Compared with a high spatial resolution PET system, the application effectively reduces manufacturing costs of a PET system without significantly reducing spatial resolution thereof.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: December 20, 2022
    Assignee: RAYCAN TECHNOLOGY CO., LTD (SUZHOU)
    Inventors: Hao Xu, Shuai Wang, Qingguo Xie, Huihua Wen