Patents Examined by Chris Chu
  • Patent number: 9606417
    Abstract: An optical modulation apparatus includes an optical modulation unit that includes a plurality of ring optical modulators which are coupled in cascade to each other and the ring optical waveguides of which have round-trip lengths different from each other, and a controller that performs, for at least one of the ring optical modulators, first resonance wavelength adjustment control to adjust the resonance wavelength of the ring optical modulator to one input light wavelength, performs second resonance wavelength adjustment control to specify the ring optical modulator that exhibits a minimum current amount required for the adjustment of the resonance wavelength of the ring optical waveguide to the one input light wavelength from among the ring optical modulators and adjust the resonance wavelength of the specified ring optical modulator to the one input light wavelength, and performs modulation driving control for the specified ring optical modulator.
    Type: Grant
    Filed: June 23, 2014
    Date of Patent: March 28, 2017
    Assignee: FUJITSU LIMITED
    Inventor: Akinori Hayakawa
  • Patent number: 9599767
    Abstract: A light emitting assembly, a backlight module having the light emitting assembly, and a liquid crystal display (LCD) apparatus having the backlight module are provided. The light emitting assembly includes a rigid circuit board, a plurality of light emitting diode (LED) devices, and a flexible circuit board. The rigid circuit board has a plurality of external circuits isolated from one another. The LED devices are disposed on the rigid circuit board, and each of the external circuits is connected to a corresponding one of the LED devices. The flexible circuit board has a plurality of connecting lines, and each of the connecting lines is connected to at least two of the external circuits, so as to serially connect the LED devices that are connected to the external circuits.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: March 21, 2017
    Assignee: Au Optronics Corporation
    Inventors: Ching-Feng Chen, Cheng-Min Tsai, Hua-Chen Fan
  • Patent number: 9557482
    Abstract: A high-order polarization conversion device configured of a planar optical waveguide, includes: a substrate; a lower clad disposed on the substrate; a core including a lower core and an upper core, the lower core being disposed on the lower clad and having a fixed height in a rectangular sectional shape, the upper core being formed of the same material as the lower core and having a fixed height in a rectangular sectional shape that is disposed continuously on the lower core; and an upper clad that is disposed on the core and the lower clad and is formed of the same material as the lower clad. The high-order polarization conversion device performs high-order polarization conversion between TE1 of the start portion and TM0 of the end portion.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: January 31, 2017
    Assignee: FUJIKURA LTD.
    Inventors: Akira Oka, Kazuhiro Goi, Kensuke Ogawa, Hiroyuki Kusaka
  • Patent number: 9529169
    Abstract: A cable that includes a first optical fiber in a center, a first layer with a plurality of metal wires and a stainless steel tube surrounding the first optical fiber, a second optical fiber inside the stainless steel tube, and a second layer with a plurality of metal wires surrounding the first layer, wherein the first optical fiber is directly exposed to the outside environment.
    Type: Grant
    Filed: January 26, 2011
    Date of Patent: December 27, 2016
    Assignee: AFL Telecommunications LLC
    Inventor: Brian Herbst
  • Patent number: 9482914
    Abstract: Provided are a slimmer liquid crystal display (LCD) and a display apparatus set having the same. The LCD includes: a liquid crystal panel having sides; a light guide plate (LGP) which is overlapped by the liquid crystal panel; a container accommodating the LGP; a printed circuit board (PCB) which is disposed between the LGP and a sidewall of the container along one of the sides of the liquid crystal panel, and which is configured to provide an image signal to the liquid crystal panel; and a light source which is disposed between the LGP and a sidewall of the container along another one of the sides of the liquid crystal panel, and which is configured to provide light to the liquid crystal panel.
    Type: Grant
    Filed: July 8, 2011
    Date of Patent: November 1, 2016
    Assignee: Samsung Display Co., Ltd.
    Inventors: Seung-Chul Jeong, Han-Jin Ryu
  • Patent number: 9354086
    Abstract: The invention relates to a fiber optic measuring apparatus and a related method which includes a number of sensors which are integrated in a cable and detect a mechanical load, a temperature and/or corrosive gases, characterized in that the sensors are supplied with light from a source and the sensors form a fiber optic network.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: May 31, 2016
    Assignee: Draka Cable Wuppertal GmbH
    Inventors: Reinhard Osenberg, Nico Emde, Peter Funken
  • Patent number: 9316785
    Abstract: A composite device for splitting photonic functionality across two or more materials comprises a platform, a chip, and a bond securing the chip to the platform. The platform comprises a base layer and a device layer. The device layer comprises silicon and has an opening exposing a portion of the base layer. The chip, a III-V material, comprises an active region (e.g., gain medium for a laser). The chip is bonded to the portion of the base layer exposed by the opening such that the active region of the chip is aligned with the device layer of the platform. A coating hermitically seals the chip in the platform.
    Type: Grant
    Filed: October 8, 2014
    Date of Patent: April 19, 2016
    Assignee: Skorpios Technologies, Inc.
    Inventors: Stephen B. Krasulick, John Dallesasse, Amit Mizrahi, Timothy Creazzo, Elton Marchena, John Y. Spann
  • Patent number: 9297878
    Abstract: Apparatus including: an optical waveguide bundle including a plurality of optical waveguides substantially aligned along a waveguide bundle axis, each optical waveguide having a longitudinal core configured to transmit light; a plurality of the optical waveguides each including a Bragg reflector, the Bragg reflectors configured to couple light incident from a direction substantially transverse to the waveguide bundle axis into the optical waveguides in a propagating mode in the longitudinal cores; and each of a plurality of longitudinal cores being in optical communication with an optical detector configured to detect light transmitted in the longitudinal cores.
    Type: Grant
    Filed: April 7, 2006
    Date of Patent: March 29, 2016
    Assignee: Alcatel Lucent
    Inventors: Gang Chen, Oleg Mitrofanov, Ronen Rapaport
  • Patent number: 9291782
    Abstract: The present invention provides a multi-channel transceiver module comprising a unitary housing having a first channel body and a second channel body. Each channel body includes a male plug end and a receptacle plug end. A bridge member is provided for joining the first and second bodies. The bridge members disposed at the receptacle end. A gap is provided between the plug ends of each channel body. The gap extends from each plug end to the bridge member to partially divide each channel so that each plug end is insertable within a separate receptacle cage.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: March 22, 2016
    Assignee: Methode Electronics, Inc.
    Inventors: Robert Skepnek, Alexandros Pirillis, Joseph Llorens, William Thomas Freed
  • Patent number: 9244239
    Abstract: A cable that includes a first optical fiber in a center, a first layer with a plurality of metal wires and a stainless steel tube surrounding the first optical fiber, a second optical fiber inside the stainless steel tube, and a second layer with a plurality of metal wires surrounding the first layer, wherein the first optical fiber is directly exposed to the outside environment.
    Type: Grant
    Filed: October 4, 2013
    Date of Patent: January 26, 2016
    Assignee: AFL Telecommunications LLC
    Inventor: Brian Herbst
  • Patent number: 9223091
    Abstract: A method and apparatus for controlled displacement, rotation and deformation of parts of a fiber optic collimator so as to provide multiple degrees of adjustment freedom that are decoupled one from another, for adjusting the path of a light beam, comprising: an output elongate hollow node for passing a light beam therethrough and towards a lens, and an elongate hollow base node having separate top and bottom parts connected to each other by opposed ends of a plurality of flexible rods that restrict the relative movement between the top and bottom parts of the base node to substantially only translational parallel movement. Opposed portions of the top and bottom parts of the base node each include a respective screw and an opposed slanted surface, which upon interaction, develop a shearing force which is applied to the top and bottom parts of the base node and cause a translational parallel relative movement therebetween.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: December 29, 2015
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventor: Leonid A. Beresnev
  • Patent number: 9222021
    Abstract: Disclosed is a liquid-crystal display device comprising a polarizing plate comprising a polarizing element and a thermoplastic-resin film which comprises a lactone ring-having polymer and satisfies the following formulas (I) and (II): (I) 0=|Re(630)|=10, and |Rth(630)|=25 (II) |Re(400)?Re(700)|=10, and |Rth(400)?Rth(700)|=35 wherein Re(?) means retardation (nm) in plane at a wavelength ? nm; and Re(?) means retardation (nm) along the thickness direction at a wavelength ? nm.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: December 29, 2015
    Assignee: FUJIFILM Corporation
    Inventor: Kotaro Yasuda
  • Patent number: 9122026
    Abstract: The present invention relates to an optical waveguide comprising a lower cladding layer, a patternized core layer and an upper cladding layer, wherein a striking part for positioning is provided in one end part thereof, and an optical path turning mirror face is formed in a position different from a striking part-forming end part in the above core layer. Capable of being provided are an optical waveguide and an optoelectronic circuit board each having a simple configuration in which an optical device is not mounted on an optical wiring part or an optoelectronic composite wiring part and capable of connecting an optical device with a core of an optical waveguide in an optical wiring part (optical waveguide) or an optoelectronic composite wiring part (optoelectronic circuit board) at a high position accuracy and an optical module comprising an optical waveguide or an optoelectronic circuit board and a connector.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: September 1, 2015
    Assignee: HITACHI CHEMICAL COMPANY, LTD.
    Inventors: Hiroshi Masuda, Toshihiro Kuroda, Tomoaki Shibata
  • Patent number: 9090818
    Abstract: Disclosed is a liquid-crystal display device comprising a polarizing plate comprising a polarizing element and a thermoplastic-resin film which comprises a lactone ring-having polymer and satisfies the following formulas (I) and (II): (I) 0=|Re(630)|=10, and |Rth(630)|=25 (II) |Re(400)?Re(700)|=10, and |Rth(400)?Rth(700)|=35 wherein Re(?) means retardation (nm) in plane at a wavelength ? nm; and Re(?) means retardation (nm) along the thickness direction at a wavelength ? nm.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: July 28, 2015
    Assignee: FUJIFILM Corporation
    Inventor: Kotaro Yasuda
  • Patent number: 9069201
    Abstract: A waterproof user interface panel includes an electronic display assembly having a touch or presence-sensitive surface.
    Type: Grant
    Filed: November 4, 2014
    Date of Patent: June 30, 2015
    Assignee: Balboa Wter Group, Inc.
    Inventors: Anthony Pipitone, James J. Johnson, Jerrell P. Hollaway
  • Patent number: 9057854
    Abstract: An optical printed circuit board is provided. The optical printed circuit board includes an insulation member, an optical fiber disposed in the insulation member and having opposite end portions exposed to a side of the insulation member, and at least one supporting member provided with a guide portion coupled to the opposite end portions of the optical fiber and guiding bending of the optical fiber.
    Type: Grant
    Filed: November 5, 2009
    Date of Patent: June 16, 2015
    Assignee: LG INNOTEK CO., LTD.
    Inventors: Jae Bong Choi, Joon Wook Han
  • Patent number: 9034752
    Abstract: Methods of exposing conductive vias of semiconductor devices may comprise conformally forming a barrier material over conductive vias extending from a backside surface of a substrate. A self-planarizing isolation material may be formed over the barrier material. An exposed surface of the self-planarizing isolation material may be substantially planar. A portion of the self-planarizing isolation material, a portion of the barrier material, and a portion of protruding material of the conductive vias may be removed to expose the conductive vias. Removal of the self-planarizing isolation material, the barrier material, and the conductive vias may be stopped after exposing at least one laterally extending portion of the barrier material.
    Type: Grant
    Filed: January 3, 2013
    Date of Patent: May 19, 2015
    Assignee: Micron Technology, Inc.
    Inventors: Hongqi Li, Anurag Jindal, Irina Vasilyeva
  • Patent number: 9035450
    Abstract: A semiconductor substrate includes a semiconductor chip and an interconnect substrate. The interconnect substrate has an interconnect region between a first main surface formed with plural orderly arranged first and second signal electrodes connected to the semiconductor chip, and a second main surface. The interconnect region has a core substrate, interconnect layers formed on both surfaces thereof, plural first through holes and plural first vias that pass through the interconnect layer on the side of the first main surface for forming impedance matching capacitances. Each first through hole is connected to a first signal interconnect at a position spaced part from the first signal electrode by a first interconnect length and each first via is connected to the second signal interconnect at a position spaced apart from the second signal electrode by a second interconnect length that is substantially equal with the first interconnect length.
    Type: Grant
    Filed: April 1, 2014
    Date of Patent: May 19, 2015
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventors: Shuuichi Kariyazaki, Ryuichi Oikawa
  • Patent number: 9019454
    Abstract: A liquid crystal display is provided that includes: a first substrate; a second substrate facing the first substrate; a switching element disposed on the first substrate; a pixel electrode connected to the switching element; a common electrode disposed on the second substrate; a liquid crystal layer disposed between the first substrate and the second substrate; an alignment layer disposed on at least one of the pixel electrode and the common electrode; and alignment aids in at least one of the liquid crystal layer and the alignment layer. The pixel electrode includes a first cutout, the common electrode includes a second cutout, and the first cutout and the second cutout are alternately arranged.
    Type: Grant
    Filed: June 17, 2011
    Date of Patent: April 28, 2015
    Assignee: Samsung Display Co., Ltd.
    Inventors: Jun-Hyup Lee, Keun-Chan Oh, Sang-Gyun Kim, Tae-Hoon Kim, Seung Wook Nam
  • Patent number: 8975176
    Abstract: The amount of gold required for bonding a semiconductor die to an electronic package is reduced by using a sheet preform tack welded to the package prior to mounting the die. The preform, only slightly larger than a semiconductor die to be attached to the package, is placed in the die bond location and tack welded to the package at two spaced locations.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: March 10, 2015
    Assignee: Materion Corporation
    Inventor: Ramesh Kothandapani