Patents Examined by Christine S Kim
  • Patent number: 10772582
    Abstract: For a multi-modal emission tomography system, an improved control system increases the likelihood of optimal image quality, satisfaction of physician goals, and/or avoids repetition in scanning and the corresponding increase in dose burden. The control system is divided into two or more arrangements. One arrangement receives goal information and outputs reconstruction settings and generic scan settings to satisfy the goal information. Another arrangement converts the generic scan settings to emission tomography system-specific scan settings, which are used to detect emissions. The separation of the arrangements allows independent operation so that different system-specific conversions may be used for different systems.
    Type: Grant
    Filed: March 20, 2018
    Date of Patent: September 15, 2020
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventor: Alexander Hans Vija
  • Patent number: 10758746
    Abstract: Disclosed are a radiotherapy assistant apparatus for modulating a build-up region of a photon beam for a radiotherapy, a radiotherapy system including the radiotherapy assistant apparatus, and method for the radiotherapy system. The radiotherapy assistant apparatus for modulating a build-up region of a photon beam for a radiotherapy, including at least: a magnetic field generator that generates a magnetic field that has a direction perpendicular to a movement direction of the photon beam, the magnetic field generator is disposed on a movement route along which the photon beam moves toward a target portion of the radiotherapy; and a magnetic field intensity adjuster that adjusts an intensity of the magnetic field generated by the magnetic field generator. The magnetic field generator disperses secondary electrons that have particular energy levels equal to or lower than a preset value.
    Type: Grant
    Filed: June 22, 2018
    Date of Patent: September 1, 2020
    Assignees: THE ASAN FOUNDATION, UNIVERSITY OF ULSAN FOUNDATION FOR INDUSTRY COOPERATION
    Inventors: Jung Won Kwak, Sang Wook Lee, Byung Chul Cho, Seung Do Ahn, Won Sik Choi, Woo Sang Ahn, Chi Young Jeong, Seong Soo Shin, Kyoung Jun Yoon
  • Patent number: 10751022
    Abstract: A control unit controls a detector including a pixel array arranged in a matrix, a driving circuit that drives the pixel array by a changeable number of pixels, and a readout circuit that outputs an electrical signal from the pixel array. The control unit controls, with a change from a first image capturing operation for repeating a set of a first accumulation operation and a first image output operation a plurality of times at a first frame rate to a second image capturing operation for repeating a set of a second accumulation operation and a second image output operation a plurality of times at a second frame rate, so that the detector continuously repeats a set of the second accumulation operation and an initialization operation a plurality of times at the second frame rate in a period between the first image capturing operation and the second image capturing operation.
    Type: Grant
    Filed: July 11, 2017
    Date of Patent: August 25, 2020
    Assignee: Canon Kabushiki Kaisha
    Inventors: Yoshiaki Ishii, Tomoyuki Yagi, Katsuro Takenaka, Takuya Ryu
  • Patent number: 10754057
    Abstract: Systems and methods are used to increase the penetration and reduce the exclusion zone of radiographic systems. An X-ray detection method irradiates an object with X-ray fanlets including vertically moving fan beams, each fanlet having an angular range smaller than the angular coverage of the object. The fanlets are produced by modulating an X-ray beam, synchronizing the X-ray beam and the fanlets, detecting the fanlets irradiating the object, collecting image slices from the detector array corresponding to a complete scan cycle of the fanlets, and processing the image slices collected for combining into a composite image.
    Type: Grant
    Filed: July 13, 2017
    Date of Patent: August 25, 2020
    Assignee: Rapiscan Systems, Inc.
    Inventors: Joseph Bendahan, James Ollier
  • Patent number: 10751013
    Abstract: A source image distance (SID) adjustable X-ray imaging apparatus is provided. The X-ray imaging apparatus may include an arm including a first end and a second end, a first X-ray component arranged at the first end of the arm, and a second X-ray component arranged at the second end of the arm. The first X-ray component and the second X-ray component may be opposite to each other. The first X-ray component may be configured to generate X-rays or receive X-rays. The first end may include a first weight balancing mechanism. When the first X-ray component moves with respect to the first weight balancing mechanism, the SID of the X-ray imaging apparatus may change but the first weight balancing mechanism may maintain a center of gravity of the first end unchanged.
    Type: Grant
    Filed: December 31, 2017
    Date of Patent: August 25, 2020
    Assignee: SHANGHAI UNITED IMAGING HEALTHCARE CO., LTD.
    Inventor: Wenqiang Liu
  • Patent number: 10753794
    Abstract: Technologies are generally described for concurrent activation of multiple illumination sources to analyze a sample. A controller may be configured to activate the illumination sources substantially simultaneously, where a current or voltage of each activated illumination source is modulated at a different frequency by respective circuit drivers of the controller. Each activated illumination source may be configured to illuminate the sample with light at a different emission wavelength, and one or more detectors may be configured to detect a composite signal from the sample in response to the illumination. The composite signal may include multiple returned signals, where each returned signal corresponds to light emitted from one of the activated illumination sources at a respective emission wavelength. One or more filters, each associated with a respective modulation frequency of one activated illumination source, may be configured to extract each returned signal from the composite signal for analysis.
    Type: Grant
    Filed: May 28, 2015
    Date of Patent: August 25, 2020
    Assignee: Empire Technology Development LLC
    Inventors: Mordehai Margalit, Curtis D. Moyer
  • Patent number: 10743649
    Abstract: The plaque detecting device of the present invention comprises a light emitting unit (450) which irradiates ultraviolet or blue excitation light (L) toward the tooth surface (99a), and a first and second light receiving units (402) which receive radiated light (L?) from the tooth surface (99a). The first light receiving unit extracts the spectral component of a first wavelength region including the wavelength range of fluorescent light specific to plaque from the radiated light (L?), and obtains a first output value corresponding to the intensity of that spectral component. The second light receiving unit extracts, from the radiated light (L?), the spectral component of a second wavelength region containing the wavelength range of the fluorescent light specific to enamel and having a predetermined lower limit wavelength below the lower limit wavelength of the first wavelength region, and obtains a second output value corresponding to the intensity of this spectral component.
    Type: Grant
    Filed: March 15, 2017
    Date of Patent: August 18, 2020
    Assignee: Colgate Palmolive Company
    Inventors: Hideyuki Yamashita, Kosuke Abe, Hideaki Yoshida, Yasuhiro Kawabata, Masashi Kitamura
  • Patent number: 10748731
    Abstract: An electron gun, an X-ray source and a CT device are provided. The electron gun includes a body having a first end portion and a second end portion opposite to each other, wherein the first end portion is a connecting end portion; an internal cavity is formed in the body and has an opening positioned on the second end portion; a cathode, a grid, a compensation electrode and a focus electrode, orderly arranged in the internal cavity in a direction from the first end portion to the second end portion.
    Type: Grant
    Filed: December 28, 2017
    Date of Patent: August 18, 2020
    Assignees: TSINGHUA UNIVERSITY, NUCTECH COMPANY LIMITED
    Inventors: Wenhui Huang, Dongsheng Zhang, Qingxiu Jin, Chengjun Tan, Donghai Liu, Qun Luo, Chuanxiang Tang
  • Patent number: 10736600
    Abstract: An X-ray imaging detector comprises at least one wireless transceiver configured to download study data from at least one external server, a digital image sensor configured to generate a plurality of signals in response to x-rays incident on the imaging detector, and at least one processor communicatively coupled to the imaging detector and the radio. The at least one processor is configured to receive the plurality of signals and generate a digital representation of an x-ray image based on the plurality of signals and associate the digital representation to the study data.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: August 11, 2020
    Assignee: VAREX IMAGING CORPORATION
    Inventors: Maxwell Allen, William Hornof, Martin Klausmeier-Brown, Cameron Love
  • Patent number: 10739253
    Abstract: Systems, devices and methods for calibrating or increasing the accuracy of light sensing devices. The methods can include calibrating a light sensing device with a calibration source that is adapted to mimic at least one representative spectrum.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: August 11, 2020
    Assignee: YouV Labs, Inc.
    Inventors: Emmanuel Dumont, Shayak Banerjee
  • Patent number: 10729397
    Abstract: Novel and advantageous systems and methods for performing X-ray imaging by extracting X-ray phase-shift and/or dark-field information through a detector that has built-in G2 functionality are provided. Grating translation can be replaced by an electrical operation in the detection procedure, thereby eliminating the need for the analyzer grating and the typical mechanical stepping process.
    Type: Grant
    Filed: July 20, 2016
    Date of Patent: August 4, 2020
    Assignees: Rensselaer Polutechnic Institute, University of Central Florida
    Inventors: Ge Wang, Wenxiang Cong, Zaifeng Shi, Shuo Pang
  • Patent number: 10725005
    Abstract: A tritium-in-air measuring apparatus for measuring a concentration of tritium in air, the measuring apparatus comprising a sensing apparatus for sensing the concentration of tritium in the air and producing at least one signal representing the concentration; a signal processing apparatus, operatively connected to the sensing apparatus, for receiving the signal, processing the signal, and outputting an indication of the concentration of tritium; the sensing apparatus comprising four equal-dimensioned ion chambers, the four chambers being formed in a single block of metal, the four chambers comprising a first measurement chamber, a second measurement chamber, a first compensation chamber and a second compensation chamber.
    Type: Grant
    Filed: May 16, 2018
    Date of Patent: July 28, 2020
    Inventor: Xiaowei Zhang
  • Patent number: 10722202
    Abstract: The present invention comprises: a first X-ray irradiation apparatus and a second X-ray irradiation apparatus for irradiating a subject with X-rays; an X-ray generation unit supporting so that first and second X-rays irradiated onto the subject are detected by a set detector when the subject is irradiated with the first and second X-rays from the first and second X-ray irradiation apparatuses, respectively; and a mode selection unit for allowing selection of any one mode from among a 2D imaging mode and 3D imaging mode, wherein the angles with respect to the subject of the first and second X-ray irradiation apparatuses are determined on the basis of said any one mode selected by means of the mode selection unit from among the 2D imaging mode and 3D imaging mode. According to the present invention, the mode can be easily selected according to need from among the 2D imaging mode and 3D imaging mode.
    Type: Grant
    Filed: April 26, 2017
    Date of Patent: July 28, 2020
    Assignee: Seoul National University Hospital
    Inventors: Chang Hwan Yoon, Dong Hoon Han
  • Patent number: 10722201
    Abstract: Novel and advantageous systems and methods for performing X-ray imaging by using an X-ray source with source grating functionality incorporated therein are provided. An electron beam can be electromagnetically manipulated such that the X-ray source emits radiation in a pattern that is the same as if the radiation had already passed through a source grating.
    Type: Grant
    Filed: July 27, 2016
    Date of Patent: July 28, 2020
    Assignee: Rensselaer Polytechnic Institute
    Inventors: Ge Wang, Wenxiang Cong
  • Patent number: 10698125
    Abstract: Time of flight (TOF) corrections for radiation detector elements of a TOF positron emission tomography (TOF PET) scanner are generated by solving an over-determined set of equations defined by calibration data acquired by the TOF PET scanner from a point source located at an isocenter of the TOF PET scanner, suitably represented as matrix equation Formula I=CS where Formula I represents TOF time differences, C is a relational matrix encoding the radiation detector elements, and S represents the TOF corrections. A pseudo-inverse C?1 of relational matrix C may be computed to solve S=C?1 Formula I. TOF corrections can be generated for a particular type of detector unit by identifying the radiation detector elements in C by detector unit. Further, multi-photon triggering time stamps can be adjusted to first-photon triggering based on Formula II where P1 is average photon count using first-photon triggering and Pm is a photon count using multi-photon triggering.
    Type: Grant
    Filed: September 17, 2015
    Date of Patent: June 30, 2020
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Sharon Xiaorong Wang, Thomas Leroy Laurence
  • Patent number: 10701790
    Abstract: An X-ray imaging apparatus operates by selecting an appropriate exposure sensitivity corresponding to the X-ray detector to be used. In the apparatus, an exposure sensitivity corresponding to the flat panel detectors used for an X-ray imaging is selected from multiple exposure sensitivities stored in an exposure sensitivity memory unit of the console, and the selected exposure sensitivity is displayed on the display unit of the high-voltage unit. An exposure control is executed based on the exposure sensitivity corresponding to the flat panel detectors used for the X-ray imaging, which is selected from multiple exposure sensitivities stored in an exposure sensitivity memory unit. The exposure control unit of the high-voltage unit suspends the X-ray irradiation from the X-ray tube when an integrated value of the X-ray detected by the X-ray dose sensor reaches to the setting-value set relative to the selected exposure sensitivity.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: June 30, 2020
    Assignee: SHIMADZU CORPORATION
    Inventors: Hideki Fujii, Tomoharu Okuno
  • Patent number: 10690903
    Abstract: Examples are directed to optimal field mappings that provide the highest contrast images for back-scanned imaging methods. The mappings can be implemented for back-scanned imaging with afocal optics including an anamorphic field correcting assembly configured to implement a non-rotationally symmetric field mapping between object space and image space to adjust distortion characteristics of the afocal optics to control image wander on a focal plane array. The anamorphic field correcting assembly can include one or more mirrors or lenses having non-rotationally symmetric aspherical departures.
    Type: Grant
    Filed: May 24, 2018
    Date of Patent: June 23, 2020
    Assignee: RAYTHEON COMPANY
    Inventor: David N. Sitter, Jr.
  • Patent number: 10684237
    Abstract: A method is disclosed for operating an x-ray device, in particular a computed tomograph, including a controller and a number of detector units coupled thereto for signaling purposes. Each of the detectors includes a functional unit and a number of detector elements coupled thereto. In an embodiment of the method, a synchronized clock signal for activating the detector elements is created from a control signal of the controller on the functional unit side.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: June 16, 2020
    Assignee: SIEMENS HEALTHCARE GMBH
    Inventors: Alexander Graf, Stefan Hartmann
  • Patent number: 10677722
    Abstract: Mid-infrared photothermal heterodyne imaging (MIR-PHI) techniques described herein overcome the diffraction limit of traditional MIR imaging and uses visible photodiodes as detectors. MIR-PHI experiments are shown that achieve high sensitivity, sub-diffraction limit spatial resolution, and high acquisition speed. Sensitive, affordable, and widely applicable, photothermal imaging techniques described herein can serve as a useful imaging tool for biological systems and other submicron-scale applications.
    Type: Grant
    Filed: April 5, 2017
    Date of Patent: June 9, 2020
    Assignee: University of Notre Dame du Lac
    Inventors: Zhongming Li, Gregory Hartland, Masaru Ken Kuno
  • Patent number: 10668408
    Abstract: A method and apparatus for analyzing a bitumen-containing process stream and controlling a process. The method including directing a beam of infrared light at the bitumen-containing process stream, capturing light corresponding to the infrared light after interaction with the bitumen-containing process stream, and analyzing the captured light to obtain a spectrum. A composition estimate can be generated based on the spectrum and a calibrated model. A controller is operative to adjust a setpoint of the process in response to the composition estimate.
    Type: Grant
    Filed: November 29, 2013
    Date of Patent: June 2, 2020
    Assignee: Suncor Energy Inc
    Inventors: Ramesh Kadali, Enbo Feng