Patents Examined by Chuong A Luu
  • Patent number: 12046566
    Abstract: A semiconductor article which includes a semiconductor substrate, a back end of the line (BEOL) wiring portion on the semiconductor substrate, a through silicon via and a guard ring. The semiconductor substrate is made of a semiconductor material. The BEOL wiring portion includes a plurality of wiring layers having electrically conductive wiring and electrical insulating material. The through silicon via provides a conductive path through the BEOL wiring portion and the semiconductor substrate. The guard ring surrounds the through silicon via in the BEOL wiring portion and in some embodiments in the semiconductor substrate.
    Type: Grant
    Filed: September 21, 2021
    Date of Patent: July 23, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Min-Feng Ku, Yao-Chun Chuang, Ching-Pin Lin, Cheng-Chien Li
  • Patent number: 12048142
    Abstract: A method for manufacturing a plurality of semiconductor structures is provided. The method includes the operations as follows. A first hybrid bonding layer is formed over a first wafer including a plurality of first memory structures. A second hybrid bonding layer is formed over a second wafer including a plurality of control circuit structures. The memory structures and the control circuit structures are in contact with the first and the second hybrid bonding layers, respectively. The first wafer and the second wafer are bonded through a first hybrid bonding operation to connect the first and the second hybrid bonding layers, thereby obtaining a first bonded wafer. At least the first wafer, the second wafer, the first hybrid bonding structure, and the second hybrid bonding structure are singulated to obtain the plurality of semiconductor structures. A method for manufacturing a system in package (SiP) is also provided.
    Type: Grant
    Filed: April 26, 2023
    Date of Patent: July 23, 2024
    Assignee: AP MEMORY TECHNOLOGY CORPORATION
    Inventors: Wenliang Chen, Lin Ma
  • Patent number: 12027504
    Abstract: The present application provides a method for improving colour difference of an LED display screen, comprising: drilling and polishing circuit surfaces of a plurality of LED substrates; performing screen printing on the circuit surfaces of the plurality of LED substrates, and performing oil skimming on a mesh screen during the screen printing every other preset printing cycle in such a way that an ink on the mesh screen has a viscosity within a predetermined viscosity range; performing an exposure setting process on the plurality of LED substrates that have been screen printed to obtain a plurality of LED printed circuit boards; and finally assembling the plurality of LED printed circuit boards to form an LED display screen.
    Type: Grant
    Filed: December 6, 2019
    Date of Patent: July 2, 2024
    Inventors: Guoke Huang, Hua Xiang, Jun Yang, Xiaofeng Yu
  • Patent number: 12027514
    Abstract: A semiconductor device and a clamping circuit including a substrate; a first semiconductor layer, arranged on the substrate and composed of a III-nitride semiconductor material; a second semiconductor layer, arranged on the first semiconductor layer and composed of a III-nitride semiconductor material; a power transistor structure, including a gate structure, a drain structure and a source structure arranged on the second semiconductor layer; the first transistor structures, arranged on the second semiconductor layer; and the second transistor structures, arranged on the second semiconductor layer in series. One end of the first transistor structures and one end of the second transistor structures are jointly electrically connected to the drain structure of the power transistor structure, and the other end of the first transistor structures and the other end of the second transistor structures are jointly electrically connected to the source structure of the power transistor structure.
    Type: Grant
    Filed: February 1, 2023
    Date of Patent: July 2, 2024
    Assignee: INNOSCIENCE (ZHUHAI) TECHNOLOGY CO., LTD.
    Inventors: Yaobin Guan, Jianjian Sheng
  • Patent number: 12020982
    Abstract: A method of forming an electronic device is disclosed. The method comprises forming depositing a metal on a substrate, the metal comprising one or more of copper (Cu), titanium (Ti), or tantalum (Ta). A metal cap is deposited on the metal. The metal cap comprises one or more of molybdenum (Mo), ruthenium (Ru), iridium (Ir), rhodium (Rh), palladium (Pd), silver (Ag), osmium (Os), platinum (Pt), or gold (Au). The substrate is then exposed to an anneal process, e.g., a hydrogen high-pressure anneal. The formation of the metal cap on the metal minimizes parasitic adsorption of hydrogen by the underlying metal.
    Type: Grant
    Filed: January 28, 2022
    Date of Patent: June 25, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Srinivas Gandikota, Steven C. H. Hung, Srinivas D. Nemani, Yixiong Yang, Susmit Singha Roy, Nikolaos Bekiaris
  • Patent number: 12020940
    Abstract: A method for fabricating semiconductor devices is disclosed. The method includes forming a recess along a top surface of a semiconductor substrate. The method includes forming a nitride-based spacer layer extending along a first sidewall of the recess. The method includes forming a field oxide layer in the recess extending along a bottom surface of the recess, while a lateral tip of the field oxide layer is blocked from extending into any portion of the semiconductor substrate other than the recess by the nitride-based spacer layer.
    Type: Grant
    Filed: January 26, 2022
    Date of Patent: June 25, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Ching-Hung Kao
  • Patent number: 12002738
    Abstract: Stacked integrated circuit devices may include standard cells including a first standard cell in a first row and a second standard cell in a second row immediately adjacent to the first row. Each of the standard cells may include an upper transistor and a lower transistor. The upper transistor may include an upper active region, an upper gate structure, and an upper source/drain region. The lower transistor may include a lower active region, a lower gate structure, and a lower source/drain region. Each of the standard cells may also include a power line and a power via electrically connecting the power line to the lower source/drain region. The power via of the first standard cell and the power via of the second standard cell may be aligned with each other along the first direction.
    Type: Grant
    Filed: June 1, 2023
    Date of Patent: June 4, 2024
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung Ho Do, Seungyoung Lee
  • Patent number: 12002913
    Abstract: The present disclosure provides a display backplane including an array substrate including at least one pixel unit each including at least one TFT; a planarization layer covering the array substrate; a pad layer including pads on the planarization layer, surface of the pad away from the planarization layer being first surface, each pixel unit being provided with one pad electrically coupled to a driving thin film transistor in a corresponding pixel unit through via hole penetrating through the planarization layer; a passivation layer covering the pad layer and including through holes, each pad corresponding to one through hole, such that the first surface of each pad is exposed through corresponding through hole, and area of top opening of through hole is smaller than area of bottom opening thereof. The present disclosure further provides a fabrication method of the display backplane, a display panel and a fabrication method thereof.
    Type: Grant
    Filed: October 22, 2020
    Date of Patent: June 4, 2024
    Assignee: BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Haixu Li, Guangcai Yuan, Zhanfeng Cao, Ke Wang, Qi Qi
  • Patent number: 11984356
    Abstract: A semiconductor device with liner-free contact structures and a method of fabricating the same are disclosed. The method includes forming first and second source/drain (S/D) regions on first and second fin structures, forming a first dielectric layer between the first and second S/D regions, forming first and second gate-all-around (GAA) structures on the first and second fin structures, forming a second dielectric layer on the first and second GAA structures and the first dielectric layer, forming a tapered trench opening in the second dielectric layer and on the first and second GAA structures and the first dielectric layer, selectively forming a seed layer on top surfaces of the first and second GAA structures and the first dielectric layer that are exposed in the tapered trench opening, and selectively depositing a conductive layer on the seed layer to fill the tapered trench opening.
    Type: Grant
    Filed: November 4, 2021
    Date of Patent: May 14, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Peng-Soon Lim, Chung-Liang Cheng, Huang-Lin Chao
  • Patent number: 11973036
    Abstract: A method of manufacturing a semiconductor package structure is provided. The method includes providing a first carrier, forming a patterned buffer layer over the first carrier, forming a first redistribution structure that includes forming a first dielectric layer on the patterned buffer layer, after an electrical testing by applying an electric signal towards the first redistribution structure, removing the first carrier, removing portions of the first dielectric layer, resulting in a patterned first dielectric layer, the patterned first dielectric layer exposing portions of the first circuit layer, removing the exposed portions of the first circuit layer, using the patterned first dielectric layer as a mask, resulting in a patterned first circuit layer, and forming an electric conductor in a recess defined by the patterned first dielectric layer and the patterned first circuit layer.
    Type: Grant
    Filed: September 13, 2021
    Date of Patent: April 30, 2024
    Assignee: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventor: Ting-Yang Chou
  • Patent number: 11967554
    Abstract: Semiconductor devices includes a first interlayer insulating layer, a lower interconnection line in the first interlayer insulating layer, an etch stop layer on the first interlayer insulating layer and the lower interconnection line, a second interlayer insulating layer on the etch stop layer, and an upper interconnection line in the second interlayer insulating layer. The upper interconnection line includes a via portion extending through the etch stop layer and contacting the lower interconnection line. The via portion includes a barrier pattern and a conductive pattern. The barrier pattern includes a first barrier layer between the conductive pattern and the second interlayer insulating layer, and a second barrier layer between the conductive pattern and the lower interconnection line. A resistivity of the first barrier layer is greater than that of the second barrier layer. A nitrogen concentration of the first barrier layer is greater than that of the second barrier layer.
    Type: Grant
    Filed: November 8, 2022
    Date of Patent: April 23, 2024
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jongjin Lee, Kyungwook Kim, Rakhwan Kim, Seungyong Yoo, Eun-Ji Jung
  • Patent number: 11967622
    Abstract: Embodiments provide a dielectric inter block disposed in a metallic region of a conductive line or source/drain contact. A first and second conductive structure over the metallic region may extend into the metallic region on either side of the inter block. The inter block can prevent etchant or cleaning solution from contacting an interface between the first conductive structure and the metallic region.
    Type: Grant
    Filed: September 3, 2021
    Date of Patent: April 23, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Te-Chih Hsiung, Jyun-De Wu, Yi-Chen Wang, Yi-Chun Chang, Yuan-Tien Tu
  • Patent number: 11961907
    Abstract: A transistor includes a trench formed in a semiconductor substrate. A conductive spacer is formed in the trench and offset from a first sidewall of the trench. A dielectric material is formed in the trench and surrounds the conductive spacer. A drift region is formed in the semiconductor substrate adjacent to the first sidewall and a first portion of a second sidewall of the trench. A drain region is formed in the drift region adjacent to a second portion of the second sidewall. A first gate region overlaps a portion of the drift region and is formed separate from the conductive spacer.
    Type: Grant
    Filed: October 24, 2022
    Date of Patent: April 16, 2024
    Assignee: NXP USA, INC.
    Inventor: Saumitra Raj Mehrotra
  • Patent number: 11961882
    Abstract: A semiconductor device includes a semiconductor substrate including a connection region, a pair of epitaxial patterns provided at the semiconductor substrate, a capacitor disposed between the pair of epitaxial patterns, a middle connection layer on the capacitor, an interconnection layer on the middle connection layer, and a through-via provided under the interconnection layer and penetrating the connection region of the semiconductor substrate. The capacitor includes an upper portion of the semiconductor substrate between the pair of epitaxial patterns, a metal electrode on the upper portion of the semiconductor substrate, and a dielectric pattern disposed between the upper portion of the semiconductor substrate and the metal electrode. The through-via is connected to the capacitor through the interconnection layer and the middle connection layer.
    Type: Grant
    Filed: September 13, 2021
    Date of Patent: April 16, 2024
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Shaofeng Ding, Jeong Hoon Ahn, Yun Ki Choi
  • Patent number: 11963468
    Abstract: In some embodiments, the present disclosure relates to an integrated chip. The integrated chip includes a bottom electrode disposed over one or more interconnects and a diffusion barrier layer on the bottom electrode. The diffusion barrier layer has an inner upper surface that is arranged laterally between and vertically below an outer upper surface of the diffusion barrier film. The outer upper surface wraps around the inner upper surface in a top-view of the diffusion barrier layer. A data storage structure is separated from the bottom electrode by the diffusion barrier layer. A top electrode is arranged over the data storage structure.
    Type: Grant
    Filed: July 27, 2022
    Date of Patent: April 16, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hai-Dang Trinh, Chii-Ming Wu, Hsing-Lien Lin, Fa-Shen Jiang
  • Patent number: 11957030
    Abstract: A flexible display module is provided. The flexible display module includes a bending area and a plane area adjacent to the bending area, and the flexible display module includes a flexible display panel; a protection cover plate; and a transparent adhesive layer, wherein the transparent adhesive layer bonds the flexible display panel and the protection cover plate, and storage modulus of at least a part of the transparent adhesive layer corresponding to the bending area is less than storage modulus of at least a part of the transparent adhesive layer corresponding to the plane area.
    Type: Grant
    Filed: March 25, 2021
    Date of Patent: April 9, 2024
    Assignee: WUHAN CHINA STAR OPTOELECTRONICS SEMICONDUCTOR DISPLAY TECHNOLOGY CO., LTD.
    Inventor: Chihshun Tang
  • Patent number: 11948941
    Abstract: A semiconductor device includes a gate layer, a channel material layer, a first dielectric layer and source/drain terminals. The gate layer is disposed over a substrate. The channel material layer is disposed over the gate layer, where a material of the channel material layer includes a first low dimensional material. The first dielectric layer is between the gate layer and the channel material layer. The source/drain terminals are in contact with the channel material layer, where the channel material layer is at least partially disposed between the source/drain terminals and over the gate layer, and the gate layer is disposed between the substrate and the source/drain terminals.
    Type: Grant
    Filed: June 23, 2021
    Date of Patent: April 2, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Tse Hung, Ang-Sheng Chou, Hung-Li Chiang, Tzu-Chiang Chen, Chao-Ching Cheng
  • Patent number: 11942368
    Abstract: Methods and devices of having an enclosure structure formed in a multi-layer interconnect and a through-silicon-via (TSV) extending through the enclosure structure. In some implementations, a protection layer is formed between the enclosure structure and the TSV.
    Type: Grant
    Filed: September 2, 2021
    Date of Patent: March 26, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Min-Feng Kao, Hsing-Chih Lin, Jen-Cheng Liu, Dun-Nian Yaung
  • Patent number: 11942407
    Abstract: In some examples a method comprises forming an insulating member over a circuit on a device side of a semiconductor die, removing a portion of the insulating member to produce a cavity, and forming a seed layer on the insulating member and within the cavity. In addition, the method includes forming a conductive member on the seed layer in the cavity, wherein the conductive member comprises a plurality of layers of different metal materials. Further, the method includes removing the seed layer from atop the insulating member, outside the cavity, after forming the conductive member in the cavity such that a remaining portion of the seed layer is positioned between the conductive member and the insulating member.
    Type: Grant
    Filed: August 31, 2021
    Date of Patent: March 26, 2024
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Jeffrey Salvacion Solas, Maricel Fabia EscaƱo
  • Patent number: 11942474
    Abstract: A method of manufacturing a parallel structure of semiconductor devices includes: disposing a semiconductor stack, which includes source/drain layers disposed vertically in sequence and channel layers therebetween, on a substrate; patterning the semiconductor stack into a predetermined shape to define an active region; forming gate stacks around at least part of peripheries of the channel layers; forming an isolation layer on peripheries of the active region and the gate stack; forming first to third conductive channels on a sidewall of the isolation layer; determining the pre-determined shape and a shape of the gate stacks, such that one of the source/drain layers on two sides of the channel layer passes through the isolation layer to contact the first conductive channel, while the other one passes through the isolation layer to contact the second conductive channel, and the gate stack passes through the isolation layer to contact the third conductive channel.
    Type: Grant
    Filed: February 22, 2023
    Date of Patent: March 26, 2024
    Assignee: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCES
    Inventor: Huilong Zhu