Patents Examined by Chuong A Luu
  • Patent number: 11862656
    Abstract: There is provided a semiconductor device including: a plurality of bumps on a first semiconductor substrate; and a lens material in a region other than the plurality of bumps on the first semiconductor substrate, wherein a distance between a side of a bump closest to the lens material and a side of the lens material closest to the bump is greater than twice a diameter of the bump closest to the lens material, and wherein the distance between the side of the bump closest to the lens material and the side of the lens material closest to the bump is greater a minimum pitch of the bumps.
    Type: Grant
    Filed: April 5, 2022
    Date of Patent: January 2, 2024
    Assignee: SONY GROUP CORPORATION
    Inventors: Jun Ogi, Junichiro Fujimagari, Susumu Inoue, Atsushi Fujiwara
  • Patent number: 11862556
    Abstract: A semiconductor device includes a first substrate, circuit devices disposed on the first substrate, a first interconnection structure electrically connected to the circuit devices, a second substrate disposed on an upper portion of the first interconnection structure, gate electrodes spaced apart from each other and stacked on the second substrate in a direction perpendicular to an upper surface of the second substrate, and channel structures penetrating the gate electrodes, extending perpendicularly to the second substrate, and including a channel layer. The semiconductor device also includes a ground interconnection structure connecting the first substrate and the second substrate, and including an upper via integrated with the second substrate and extending from a lower surface of the second substrate towards the first substrate.
    Type: Grant
    Filed: October 10, 2022
    Date of Patent: January 2, 2024
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Taemok Gwon, Junhyoung Kim, Chadong Yeo, Youngbum Woo
  • Patent number: 11854897
    Abstract: A method includes forming a plurality of fins on a substrate and a dummy gate structure over the fins. A spacer layer is formed over the dummy gate structure and the fins. The spacer layer is recessed to form asymmetrically recessed spacers along sidewalls of each of the fins, thereby exposing a portion of each of the fins. A source/drain epitaxy is grown on the exposed portions of the plurality of fins, a first source/drain epitaxy on a first fin being asymmetrical to a second source/drain epitaxy on a second fin. A device includes a first and second fin on a substrate with a gate structure formed over the first and second fins. An epitaxy if formed over the first fin and the second fin on the same side of the gate structure, where the height of the first epitaxy is greater than the height of the second epitaxy.
    Type: Grant
    Filed: June 14, 2021
    Date of Patent: December 26, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventor: Yu-Lien Huang
  • Patent number: 11855127
    Abstract: A semiconductor structure includes a first electrode, a second electrode over the first electrode, a third electrode over the second electrode, a first insulating layer between the first electrode and the second electrode, and a second insulating layer between the second electrode and the third electrode. The third electrode includes a first bottom surface and a second bottom surface. The first bottom surface and the second bottom surface are at different levels. A width of the first bottom surface is greater than a width of the second bottom surface.
    Type: Grant
    Filed: July 5, 2022
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Yi Jen Tsai, Yuan-Tai Tseng, Chern-Yow Hsu
  • Patent number: 11856796
    Abstract: A semiconductor device includes a lower silicon layer comprising a first area and a second area. The lower silicon layer in the first area includes a first silicon oxide layer, a first upper silicon layer disposed above the first silicon oxide layer, and a first metal gate disposed above the first upper silicon layer. The lower silicon layer in the second area includes a second silicon oxide layer, a plurality of first doped silicon gates disposed above the second silicon oxide layer, and a plurality of portions of a second doped silicon gate disposed above the second silicon oxide layer. The plurality of first doped silicon gates and the plurality of portions of the second doped silicon gate are alternatively arranged with each other. The lower silicon layer in the second area also includes a plurality of second metal gates disposed directly above the plurality of first doped silicon gates, respectively.
    Type: Grant
    Filed: January 27, 2022
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Meng-Han Lin, Chia-En Huang
  • Patent number: 11854880
    Abstract: This application relates to a memory device and a method for manufacturing the same, including: a substrate on which an insulation structure and a plurality of first active structures are formed is provided. The plurality of first active structures are arranged at intervals in the insulation structure. A word line conductive layer is formed on the substrate by a physical vapor deposition process. The word line conductive layer is patterned and etched to obtain a plurality of word line structures arranged in parallel and at intervals and filling slots located between adjacent word line structures. The filling slots comprise first filling slots that expose both parts of top surfaces of the first active structures and parts of the top surface of the insulation structure. Second active structures are formed in the first filling slots, and isolation structures are formed in the first filling slots.
    Type: Grant
    Filed: August 25, 2021
    Date of Patent: December 26, 2023
    Assignee: CHANGXIN MEMORY TECHNOLOGIES, INC.
    Inventor: Tao Chen
  • Patent number: 11855139
    Abstract: Disclosed are a semiconductor structure and method of forming the structure. The semiconductor structure includes an extended drain metal oxide semiconductor field effect transistor (EDMOSFET). The EDMOSFET includes, in the semiconductor layer, a body well, which has a source region therein, and a drain drift well, which abuts the body well and has a drain region therein. A trench gate structure is within the drain drift well positioned laterally between the body-drain drift junction and an internal shallow trench isolation (STI) region and the internal STI region is between the trench gate structure and the drain region. A primary gate structure is on the top surface of the semiconductor layer traversing the body-drain drift junction and optionally extending over the trench gate structure. Gate dielectric material physically separates gate conductor materials of the primary and trench gate structures. Optionally, the EDMOSFET includes more than one trench gate structure.
    Type: Grant
    Filed: January 10, 2022
    Date of Patent: December 26, 2023
    Assignee: GlobalFoundries U.S. Inc.
    Inventor: Ketankumar Harishbhai Tailor
  • Patent number: 11854940
    Abstract: A semiconductor device includes a substrate and a first transistor on a first side of the substrate. The semiconductor device further includes a first electrode contacting a first region of the first transistor. The semiconductor device further includes a spacer extending along a sidewall of the first transistor. The semiconductor device further includes a self-aligned interconnect structure (SIS) separated from at least a portion of the first electrode by the spacer, wherein the SIS extends through the substrate. The semiconductor device further includes a second electrode contacting a surface of the first electrode farthest from the substrate, wherein the second electrode directly contacts the SIS.
    Type: Grant
    Filed: April 15, 2021
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chih-Yu Lai, Chih-Liang Chen, Chi-Yu Lu, Shang-Syuan Ciou, Hui-Zhong Zhuang, Ching-Wei Tsai, Shang-Wen Chang
  • Patent number: 11855014
    Abstract: A semiconductor device and method of manufacturing is provided, whereby a support structure is utilized to provide additional support for a conductive element in order to eliminate or reduce the formation of a defective surface such that the conductive element may be formed to have a thinner structure without suffering deleterious structures.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: December 26, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Ming-Che Ho, Hung-Jui Kuo, Yi-Wen Wu, Tzung-Hui Lee
  • Patent number: 11848366
    Abstract: Provided are an electronic device including a dielectric layer having an adjusted crystal orientation and a method of manufacturing the electronic device. The electronic device includes a seed layer provided on a substrate and a dielectric layer provided on the seed layer. The seed layer includes crystal grains having aligned crystal orientations. The dielectric layer includes crystal grains having crystal orientations aligned in the same direction as the crystal orientations of the seed layer.
    Type: Grant
    Filed: September 7, 2021
    Date of Patent: December 19, 2023
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Taehwan Moon, Eunha Lee, Junghwa Kim, Hyangsook Lee, Sanghyun Jo, Jinseong Heo
  • Patent number: 11848256
    Abstract: Embodiments of the present disclosure are directed to leadframe semiconductor packages having die pads with cooling fins. In at least one embodiment, the leadframe semiconductor package includes leads and a semiconductor die (or chip) coupled to a die pad with cooling fins. The cooling fins are defined by recesses formed in the die pad. The recesses extend into the die pad at a bottom surface of the semiconductor package, such that the bottom surfaces of the cooling fins of the die pad are flush or coplanar with a surface of the package body, such as an encapsulation material. Furthermore, bottom surfaces of the cooling fins of the die pad are flush or coplanar with exposed bottom surfaces of the leads.
    Type: Grant
    Filed: October 25, 2021
    Date of Patent: December 19, 2023
    Assignee: STMICROELECTRONICS, INC.
    Inventor: Jefferson Talledo
  • Patent number: 11844207
    Abstract: A semiconductor device including an active pattern; a gate structure connected to the active pattern; a bit line structure connected to the active pattern; a buried contact connected to the active pattern; a contact pattern covering the buried contact; a landing pad connected to the contact pattern; and a capacitor structure connected to the landing pad, wherein the buried contact includes a first growth portion and a second growth portion spaced apart from each other, and the landing pad includes an interposition portion between the first growth portion and the second growth portion.
    Type: Grant
    Filed: January 20, 2022
    Date of Patent: December 12, 2023
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jeonil Lee, Youngjun Kim, Jinbum Kim
  • Patent number: 11837623
    Abstract: Methods and apparatus for an assembly having directly bonded first and second wafers where the assembly includes a backside surface and a front side surface. The first wafer includes IO signal connections vertically routed to the direct bonding interface by a first one of the bonding posts on the first wafer bonded to a first one of the bonding posts on the second wafer. The second wafer includes vertical routing of the IO signal connections from first one though the bonding posts on the second wafer to IO pads on a backside surface of the assembly.
    Type: Grant
    Filed: October 12, 2020
    Date of Patent: December 5, 2023
    Assignee: Raytheon Company
    Inventors: Eric Miller, Christian M. Boemler, Justin Gordon Adams Wehner, Drew Fairbanks, Sean P. Kilcoyne
  • Patent number: 11837601
    Abstract: A field effect transistor includes a gate dielectric and a gate electrode overlying an active region and contacting a sidewall of a trench isolation structure. The transistor may be a fringeless transistor in which the gate electrode does not overlie a portion of the trench isolation region. A planar dielectric spacer plate and a conductive gate cap structure may overlie the gate electrode. The conductive gate cap structure may have a z-shaped vertical cross-sectional profile to contact the gate electrode and to provide a segment overlying the planar dielectric spacer plate. Alternatively or additionally, a conductive gate connection structure may be provided to provide electrical connection between two electrodes of adjacent field effect transistors.
    Type: Grant
    Filed: May 10, 2021
    Date of Patent: December 5, 2023
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Jun Akaiwa, Dai Iwata, Hiroshi Nakatsuji, Eiichi Fujikura, Hiroyuki Ogawa
  • Patent number: 11837531
    Abstract: A semiconductor device includes a chip carrier, a first semiconductor chip arranged on the chip carrier, the first semiconductor chip being located in a first electrical potential domain when the semiconductor device is operated, a second semiconductor chip arranged on the chip carrier, the second semiconductor chip being located in a second electrical potential domain different from the first electrical potential domain when the semiconductor device is operated, and an electrically insulating structure arranged between the first semiconductor chip and the second semiconductor chip, which is designed to galvanically isolate the first semiconductor chip and the second semiconductor chip from each other.
    Type: Grant
    Filed: August 9, 2022
    Date of Patent: December 5, 2023
    Assignee: Infineon Technologies AG
    Inventor: Rainer Markus Schaller
  • Patent number: 11837472
    Abstract: Disclosed herein is a new and improved system and method for fabricating monolithically integrated diamond semiconductor. The method may include the steps of seeding the surface of a substrate material, forming a diamond layer upon the surface of the substrate material; and forming a semiconductor layer within the diamond layer, wherein the diamond semiconductor of the semiconductor layer has n-type donor atoms and a diamond lattice, wherein the donor atoms contribute conduction electrons with mobility greater than 770 cm.sup.2/Vs to the diamond lattice at 100 kPa and 300K, and Wherein the n-type donor atoms are introduced to the lattice through ion tracks.
    Type: Grant
    Filed: August 24, 2021
    Date of Patent: December 5, 2023
    Assignee: AKHAN SEMICONDUCTOR, INC.
    Inventor: Adam Khan
  • Patent number: 11830923
    Abstract: Disclosed is an RF switch device and, more particularly, an RF switch device having an air gap over a gate electrode and a metal interconnect at a position higher than the air gap and that at least partially overlap the air gap in the vertical direction, thereby preventing exposure of an upper portion of the air gap in subsequent processing.
    Type: Grant
    Filed: April 11, 2022
    Date of Patent: November 28, 2023
    Assignee: DB HiTek, Co., Ltd.
    Inventors: Seung Hyun Eom, Jin Hyo Jung, Hae Taek Kim, Ja Geon Koo, Ki Won Lim, Hyun Joong Lee, Sang Yong Lee
  • Patent number: 11830846
    Abstract: Embodiments herein relate to systems, apparatuses, or processes for coupling or decoupling two substrates by heating pins on one of the substrates and either inserting or withdrawing the heated pins from solder elements on a BGA. In particular, by heating a plurality of pins on a first side of a first substrate, where the plurality of pins are substantially perpendicular to a plane of the substrate, inserting the heated plurality of pins into BGA attached to a second substrate where the BGA includes a plurality of solder elements aligned with the plurality of pins and where the heated plurality of pins melt the plurality of solder elements upon insertion. The inserted plurality of pins physically and/or electrically couple the first substrate and the second substrate.
    Type: Grant
    Filed: May 28, 2019
    Date of Patent: November 28, 2023
    Assignee: Intel Corporation
    Inventors: Feroz Mohammad, Srinivasa R. Aravamudhan
  • Patent number: 11798883
    Abstract: A semiconductor device includes an integrated circuit (IC) and an interlayer dielectric layer on the substrate, a contact through the interlayer dielectric layer and electrically connected to the IC, a wiring layer on the interlayer dielectric layer with a wiring line electrically connected to the contact, a first passivation layer on the wiring layer, first and second pads on the first passivation layer, and a through electrode through the substrate, the interlayer dielectric layer, the wiring layer, and the first passivation layer to connect to the first pad. The first pad includes a first head part on the first passivation layer, and a protruding part that extends into the first passivation layer from the first head part, the protruding part surrounding a lateral surface of the through electrode in the first passivation layer, and the second pad is connected to the IC through the wiring line and the contact.
    Type: Grant
    Filed: November 16, 2021
    Date of Patent: October 24, 2023
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Shaofeng Ding, Jeong Hoon Ahn, Yun Ki Choi
  • Patent number: 11798983
    Abstract: A semiconductor device includes a substrate, a gate structure, a source region, a drain region, a doped region, and a channel region. The gate structure is disposed in the substrate, and the source region and drain regions being a first conductivity type respectively disposed at two sides of the gate structure. The doped region being a second conductivity type different from the first conductivity type is disposed below and separated from the gate structure, the source region, and drain region, the doped region. The channel region is disposed between the doped region and the gate structure and in contact with the doped region, and a dopant concentration of the channel region is less than a dopant concentration of the doped region.
    Type: Grant
    Filed: July 19, 2021
    Date of Patent: October 24, 2023
    Assignee: United Semiconductor Japan Co., Ltd.
    Inventors: Fumitaka Ohno, Makoto Yasuda