Patents Examined by Colleen M Raphael
  • Patent number: 8992738
    Abstract: The invention relates to a method for converting carbon dioxide to methane. The method comprises exposing carbon dioxide adsorbed on a nanoporous silicate matrix to light in the presence of a source of carbon dioxide and a source of hydrogen for a time and under conditions sufficient to convert carbon dioxide to methane. The matrix contains at least one photochromic metal oxide entity, and contains a C1 impurity site. The light has a wavelength of about 437 nm to about 1200 nm.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: March 31, 2015
    Assignee: Research Foundation of the City University of New York
    Inventor: Harry D. Gafney
  • Patent number: 8986513
    Abstract: A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula BxCyNz. The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula BxCyNz.
    Type: Grant
    Filed: June 18, 2013
    Date of Patent: March 24, 2015
    Assignees: Jefferson Science Associates, LLC, The United States of America as Represented by the Administration of NASA
    Inventors: R. Roy Whitney, Kevin Jordan, Michael W. Smith
  • Patent number: 8986512
    Abstract: Provided in this invention is a process for producing chemically functionalized nano graphene materials, known as nano graphene platelets (NGPs), graphene nano sheets, or graphene nano ribbons. Subsequently, a polymer can be grafted to a functional group of the resulting functionalized graphene. In one preferred embodiment, the process comprises a step of mixing a starting nano graphene material having edges and two primary graphene surfaces, an azide or bi-radical compound, and an organic solvent in a reactor, and allowing a chemical reaction between the nano graphene material and the azide compound to proceed at a temperature for a length of time sufficient to produce the functionalized nano graphene material.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: March 24, 2015
    Assignee: Nanotek Instruments, Inc.
    Inventors: Aruna Zhamu, Bor Z. Jang
  • Patent number: 8986515
    Abstract: A combined production-functionalization process for producing a chemically functionalized nano graphene material from a pre-intercalated, oxidized, or halogenated graphite material, comprising: (A) Producing exfoliated graphite from the pre-intercalated, oxidized, or halogenated graphite material, wherein the graphite material is selected from the group consisting of natural graphite, artificial graphite, highly oriented pyrolytic graphite, carbon fiber, graphite fiber, carbon nano-fiber, graphitic nano-fiber, meso-carbon micro-bead, graphitized coke, and combinations thereof; (B) Dispersing the exfoliated graphite and an azide or bi-radical compound in a liquid medium to form a suspension; (C) Subjecting the suspension to ultrasonication with ultrasonic waves of a desired intensity for a length of time sufficient to produce nano graphene platelets and to enable a chemical reaction to occur between the nano graphene platelets and the azide or bi-radical compound to produce the functionalized nano graphene mat
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: March 24, 2015
    Assignee: Nanotek Instruments, Inc.
    Inventors: Aruna Zhamu, Bor Z. Jang
  • Patent number: 8986516
    Abstract: A method to release hydrogen from a material comprising hydrogen fixed fullerenes involves irradiating the hydrogen fixed fullerenes with electromagnetic radiation of sufficient intensity to release hydrogen rapidly upon irradiation. The intensity of the irradiation and/or the area of irradiation can be adjusted to control the rate and extent of hydrogen release. The hydrogen depleted material comprising hydrogen fixed fullerene can be hydrogenated to regenerate the material.
    Type: Grant
    Filed: January 5, 2009
    Date of Patent: March 24, 2015
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Vijay Krishna, Brij M. Moudgil, Benjamin L. Koopman
  • Patent number: 8986533
    Abstract: The invention relates to various embodiments of an environmentally beneficial method for reducing carbon dioxide. The methods in accordance with the invention include electrochemically or photoelectrochemically reducing the carbon dioxide in a divided electrochemical cell that includes an anode, e.g., an inert metal counterelectrode, in one cell compartment and a metal or p-type semiconductor cathode electrode in another cell compartment that also contains an aqueous solution of an electrolyte and a catalyst of one or more substituted or unsubstituted aromatic amines to produce therein a reduced organic product.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: March 24, 2015
    Assignee: Princeton University
    Inventors: Andrew B. Bocarsly, Emily Barton Cole
  • Patent number: 8986510
    Abstract: It is intended to provide a method whereby a target to be analyzed can be easily decomposed in a micro region and a decomposition apparatus. In the decomposition method of decomposing the target to be analyzed and the decomposition apparatus, the target is allowed to coexist with a microparticle and then the microparticle is put into the high-energy state. Then, the target located in the vicinity of the surface of the microparticle is decomposed due to the energy transfer from the high-energy microparticle toward the target. Thus, the target can be easily decomposed in a micro region.
    Type: Grant
    Filed: May 9, 2006
    Date of Patent: March 24, 2015
    Assignee: Genesis Research Institute, Inc.
    Inventors: Yoshihiro Takeda, Fumitaka Mafune, Tamotsu Kondou
  • Patent number: 8986514
    Abstract: Disclosed are: a catalyst which is capable of reducing and converting nitrate ions into ammonia without adding a hydrogen gas thereto; a method for synthesizing ammonia using the catalyst, wherein nitrate ions are reduced without adding a hydrogen gas thereto; and a method for decreasing nitrogen oxide in water by reducing nitrate ions contained in the water. Disclosed is a photocatalyst composition that is obtained by loading a photocatalyst, which is capable of photoreducing protons into a hydrogen gas, with CuPd alloy nanoparticles. The photocatalyst composition is used for the purpose of producing ammonia by photoreducing nitrogen that is coexistent with water and nitrogen oxide. The CuPd alloy nanoparticles are (1) CuPd alloy nanoparticles having a B2 type crystal structure and represented by CuxPd(1-x) (wherein 0.3?x?0.7), (2) CuPd alloy nanoparticles having a bcc type crystal structure and represented by CuxPd(1-x) (wherein 0.3<x<0.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: March 24, 2015
    Assignee: National University Corporation Hokkaido University
    Inventors: Miho Yamauchi, Ryu Abe
  • Patent number: 8986511
    Abstract: The method provides for use of sensitized photocatalyst for the photocatalytic reduction of CO2 under visible light illumination. The photosensitized catalyst is comprised of a wide band gap semiconductor material, a transition metal co-catalyst, and a semiconductor sensitizer. The semiconductor sensitizer is photoexcited by visible light and forms a Type II band alignment with the wide band gap semiconductor material. The wide band gap semiconductor material and the semiconductor sensitizer may be a plurality of particles, and the particle diameters may be selected to accomplish desired band widths and optimize charge injection under visible light illumination by utilizing quantum size effects. In a particular embodiment, CO2 is reduced under visible light illumination using a CdSe/Pt/TiO2 sensitized photocatalyst with H2O as a hydrogen source.
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: March 24, 2015
    Assignee: U.S. Department of Energy
    Inventors: Christopher Matranga, Robert L. Thompson, Congjun Wang
  • Patent number: 8986531
    Abstract: A system includes an ionic exchange conduit through which a flow of photosynthetic biomass is drawn capturing an electrical charge which is used to alternately power a photonic activated reservoir housing a living photosynthetic biomass suspended in a flowing liquid medium which self generates an electrical charge as it migrates towards and through a cathode separated from an anode by a membrane. Upon electrical transfer through the circuit an electrolysis process begins and releases hydrogen and oxygen into enclosed atmosphere chambers where these separated gases can be captured for use in a fuel cell.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: March 24, 2015
    Assignee: Ennesys SAS
    Inventors: Nicholas Eckelberry, Michael Green
  • Patent number: 8986621
    Abstract: Methods and apparatuses for converting carbon dioxide and treating waste material using a high energy electron beam are disclosed. For example, carbon dioxide and an aqueous reaction solution having a reactant can be combined to form an aqueous reaction mixture, and the aqueous reaction mixture can then be subjected to a high energy electron beam that initiates a reaction between carbon dioxide and the reactant to form a reaction product. Solid or liquid waste material can be treated by, for example, combining carbon dioxide and a solid or liquid waste material having a reactant and then subjecting the carbon dioxide and solid or liquid waste material having a reactant to a high energy electron beam to initiate a reaction between the carbon dioxide and the reactant to form a reaction product.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: March 24, 2015
    Assignee: IXYS Corporation
    Inventor: Nathan Zommer
  • Patent number: 8986532
    Abstract: Methods for the photoreduction of molecules are provided. The methods use diamond having a negative electron affinity as a photocatalyst, taking advantage of its ability to act as a solid-state electron emitter that is capable of inducing reductions without the need for reactants to adsorb onto its surface. The methods comprise illuminating a fluid sample comprising the molecules to be reduced and hydrogen surface-terminated diamond having a negative electron affinity with light comprising a wavelength that induces the emission of electrons from the diamond directly into the fluid sample. The emitted electrons induce the reduction of the molecules to form a reduction product.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: March 24, 2015
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Robert J. Hamers, Di Zhu, Nigel Hajj Becknell
  • Patent number: 8882970
    Abstract: An apparatus for manufacturing carbon nanohorns includes a production chamber configured to irradiate a solid carbon material with a laser beam to produce a product containing carbon nanohorns; and a separation mechanism configured to separate the product produced in the production chamber into a lightweight component and a heavyweight component. The heavyweight component includes carbon nanohorn aggregate with high purity, and high-purity carbon nanotubes can be obtained by collecting the heavyweight component.
    Type: Grant
    Filed: April 19, 2007
    Date of Patent: November 11, 2014
    Assignees: NEC Corporation, Fuchita Nanotechnology Ltd.
    Inventors: Takeshi Azami, Daisuke Kasuya, Tsutomu Yoshitake, Yoshimi Kubo, Masako Yudasaka, Sumio Iijima, Eiji Fuchita
  • Patent number: 8877018
    Abstract: The present teachings describe a process for converting a HOGaPc Type I polymorph to the HOGaPc Type V polymorph. The process includes obtaining a slurry comprising hydroxy gallium phthalocyanine (HOGaPc) Type I polymorph. The slurry is mixed at a resonant frequency of the slurry by applying a low frequency acoustic field for a time sufficient to convert the HOGaPc Type I polymorph to the HOGaPc Type V polymorph.
    Type: Grant
    Filed: April 4, 2012
    Date of Patent: November 4, 2014
    Assignee: Xerox Corporation
    Inventors: Sarah J. Robinson, Marko Saban, Yulin Wang, Sandra J. Gardner, Cuong Vong
  • Patent number: 8840772
    Abstract: The present teachings are directed to a method of converting water and a carbon-containing compound, such as CO2, into a hydrocarbon through a process of absorbing sunlight on a light-absorbing component to photoelectrochemically oxidize water and reacting the products from that water oxidation reaction over a catalyst with the carbon-containing compound to produce the desired hydrocarbon compound.
    Type: Grant
    Filed: May 17, 2010
    Date of Patent: September 23, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventor: Ting He
  • Patent number: 8828193
    Abstract: Methods for converting graphite oxide into graphene by exposure to electromagnetic radiation are described. As an example, graphene oxide may be rapidly converted into graphene upon exposure to converged sunlight.
    Type: Grant
    Filed: September 6, 2011
    Date of Patent: September 9, 2014
    Assignee: Indian Institute of Technology Madras
    Inventors: Ramaprabhu Sundara, Eswaraiah Varrla, Jyothirmayee Aravind Sasidharannair Sasikaladevi
  • Patent number: 8801915
    Abstract: In the ammonia synthesis method, an anode and a cathode are arranged in an electrolyte phase at a predetermined interval; water (H2O) is supplied to an anode zone and light is radiated so that water is decomposed by a photoabsorption reaction to generate protons (H+), electrons (e?), and an oxygen gas (O2); a nitrogen gas (N2 ) is supplied to a cathode zone, and the electrons (e?) generated in the anode zone are allowed to transfer to the cathode zone through a lead, thereby generating N3? in the cathode zone; and ammonia (NH3 ) is synthesized through the reaction between the protons (H+) that have moved toward the cathode zone from the anode zone in the electrolyte phase and N3?.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: August 12, 2014
    Assignee: Hitachi Zosen Corporation
    Inventors: Susumu Hikazudani, Takuma Mori, Sadao Araki
  • Patent number: 8753488
    Abstract: An apparatus for growing nano-clusters includes a pair of electrodes separated by an electrode pair spacing and a field generation module that generates a corona discharge across the electrodes. The corona discharge generates an electromagnetic field near the electrodes. A voltage potential across the electrodes is a medium voltage. The field generation module includes a medium voltage module that generates a medium voltage waveform, which is transmitted to the electrodes to generate the corona discharge. The field generation module includes a broad frequency generation module that generates a broad spectrum of frequencies within the medium voltage waveform. A raw material feeder module feeds particles of a raw material through the electromagnetic field. The electromagnetic field with the broad spectrum of frequencies is operative to separate at least a portion of the raw material fed through the electromagnetic field into free atoms.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: June 17, 2014
    Assignee: JTW, LLC
    Inventor: James T. Wilkinson
  • Patent number: 8747623
    Abstract: A method of producing exfoliated graphite or graphene from a graphitic or carbonaceous material. The method includes: (a) dispersing a graphitic material in a liquid intercalating agent to form a suspension; and (b) subjecting the suspension to microwave or radio frequency irradiation for a length of time sufficient for producing the exfoliated graphite or graphene. In one preferred embodiment, the intercalating agent is an acid or an oxidizer, or a combination of both. The method enables production of more electrically conducting graphene sheets directly from a graphitic material without going through the chemical intercalation or oxidation procedure. The process is fast (minutes as opposed to hours or days of conventional processes), environmentally benign, and highly scalable.
    Type: Grant
    Filed: October 11, 2011
    Date of Patent: June 10, 2014
    Assignee: Nanotek Instruments, Inc.
    Inventors: Aruna Zhamu, Bor Z. Jang
  • Patent number: 8721843
    Abstract: An improved system and method for generating graphene involves producing a plurality of ionized carbon atoms in a plasma generation chamber and providing the plurality of ionized carbon atoms to a graphene generation chamber having a magnetic structure. The graphene generation chamber generates graphene from said plurality of ionized carbon atoms over said magnetic structure such that said graphene floats over said magnetic structure due to said graphene being diamagnetic. The rate at which the plurality of ionized carbon atoms is produced is controlled to control the rate of graphene generation. The magnetic field of the magnetic structure can be controlled to control the rate at which the generated graphene moves through the graphene generation chamber until it exits as a recovered graphene product.
    Type: Grant
    Filed: October 13, 2011
    Date of Patent: May 13, 2014
    Assignee: Cedar Ridge Research, LLC
    Inventors: Larry W. Fullerton, Mark D. Roberts