Patents Examined by Colleen M Raphael
  • Patent number: 9809456
    Abstract: It is an object to provide a manufacturing method for a large amount of positive electrode active material with few variations, having a highly uniform surface condition, micro-size, and high performance. An aqueous solution of a compound, which becomes the source material for the positive electrode active material, is put in an airtight container and irradiated with microwaves, thus heating while water in the airtight container is evaporated and a high pressure is formed in the air tight container. A large amount of micro-sized positive electrode active material having a highly uniform surface condition can be formed. A compound, which becomes the source material for the positive electrode active material, is put in an airtight container and irradiated with microwaves, thus heating while water in the airtight container is evaporated and a high pressure is formed in the air tight container.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: November 7, 2017
    Assignee: Semiconductor Energy Laboratory Co., LTD.
    Inventor: Akiharu Miyanaga
  • Patent number: 9790602
    Abstract: Techniques for photocatalytic hydrogen generation are provided. In one aspect, a hydrogen producing cell is provided. The hydrogen producing cell includes an anode electrode; a photocatalytic material adjacent to the anode electrode; a solid electrolyte adjacent to a side of the photocatalytic material opposite the anode electrode; and a cathode electrode adjacent to a side of the solid electrolyte opposite the photocatalytic material. A solar hydrogen producing system including at least one solar concentrating assembly having the hydrogen producing cell, and a method for producing hydrogen using the hydrogen producing cell are also provided.
    Type: Grant
    Filed: August 11, 2014
    Date of Patent: October 17, 2017
    Assignee: International Business Machines Corporation
    Inventors: Talia S. Gershon, Supratik Guha, Teodor K. Todorov, Theodore G. van Kessel
  • Patent number: 9776162
    Abstract: The present investigation is development of the TiO2 nanotubes concept of preparation of and their composite with fine dispersion of copper. The inventions also relates to identify a method for optimum amount of photocatalyst required for efficient and maximum hydrogen production reported than earlier (H2=99,823 ?mol·h?1·g?1 catalyst) from glycerol-water mixtures under solar light irradiation. A method is disclosed to produce CuO/TiO2 nanotubes with high sustainability and recyclable activity for hydrogen production.
    Type: Grant
    Filed: August 14, 2014
    Date of Patent: October 3, 2017
    Assignee: Council of Scientific & Industrial Research
    Inventors: Valluri Durga Kumari, Machiraju Subrahmanyam, Basavaraju Srinivas, Gullapelli Sadanandam, Muthukonda Venkatakrish Nan Shankar, Bethanabhatla Syama Sundar, Murikinati Mamatha Kumari, Dharani Praveen Kumar
  • Patent number: 9776161
    Abstract: The present invention relates to a method for generating nitric oxide, which comprises the steps of: providing a precursor solution comprising a nitric oxide precursor in a first reservoir (12), guiding the precursor solution through a reaction chamber (16), thereby subjecting the precursor solution to radiation to generate nitric oxide, guiding the generated nitric oxide out of the reaction chamber (16) by a stream of carrier gas, and guiding the reacted solution into a second reservoir (14). The method according to the invention provides a method of generating nitric oxide, or a flow of nitric oxide comprising gas, in which the concentration of the nitric oxide may be kept especially constant. Also claimed is an apparatus for generating nitric oxide comprising reservoirs for the precursor solution and the reacted solution and a reaction chamber.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: October 3, 2017
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Claudia Hannelore Igney, Rainer Hilbig, Achim Gerhard Rolf Koerber
  • Patent number: 9764305
    Abstract: A principle is established to show that nanoscale energy deposition in water by X-rays can be greatly enhanced via the geometry of nanostructures. The calculated results show that enhancement over background water can reach over 60 times for a single nanoshell made of gold. Other geometries and nanostructures are investigated, and it is found that a shell of gold nanoparticles can generate similar enhancement. The concepts of composition, matrix, and satellite effects are established and studied, all of which can further increase the enhancement of the effect of X-rays.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: September 19, 2017
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventor: Ting Guo
  • Patent number: 9758881
    Abstract: A process for the production of energetically rich compounds comprising: using externally supplied thermal energy to heat an electrolyzable compound to a temperature greater than the ambient temperature; generating electricity from a solar electrical photovoltaic component; subjecting the heated electrolyzable compound to electrolysis with the solar generated electricity to generate an energetically rich electrolytic product.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: September 12, 2017
    Assignee: The George Washington University
    Inventor: Stuart Licht
  • Patent number: 9757684
    Abstract: An improved process and for removing NOx from exhaust gases produced by combustion-based energy sources. Catalyst-free exhaust gas is directed into one or more ducts. The gas is cooled and then passes through the duct, wherein the gas flow rate and the electron beam pulse rate are configured to cause each successive volume of gas that flows past the window to be subjected to only a single electron beam pulse in the reaction chamber. A single short, intense electron beam is fired into the exhaust through a window in the reaction chamber as the exhaust flows past the window, with some of the electrons being reflected back into the gas by a reflective plate situated opposite the window. The deposited electron energy causes NOx from the exhaust to be converted into N2 and O2 which are output into the atmosphere with the thus-scrubbed exhaust.
    Type: Grant
    Filed: September 6, 2016
    Date of Patent: September 12, 2017
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Matthew F. Wolford, Matthew C. Myers, John D. Sethian, Frank Hegeler
  • Patent number: 9738529
    Abstract: Described is a method of reducing CO2 to CO using visible radiation and plasmonic photocatalysts. The method includes contacting CO2 with a catalyst, in the presence of H2, wherein the catalyst has plasmonic photocatalytic reductive activity when exposed to radiation having a wavelength between 380 nm and 780 nm. The catalyst, CO2, and H2 are exposed to non-coherent radiation having a wavelength between 380 nm and 780 nm such that the catalyst undergoes surface plasmon resonance. The surface plasmon resonance increases the rate of CO2 reduction to CO as compared to the rate of CO2 reduction to CO without surface plasmon resonance in the catalyst.
    Type: Grant
    Filed: April 9, 2014
    Date of Patent: August 22, 2017
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: George W. Huber, Aniruddha A. Upadhye, Hyung Ju Kim, Insoo Ro, M. Isabel Tejedor-Anderson
  • Patent number: 9708718
    Abstract: There is provided a hydrogen production device which is high in the light use efficiency and can produce hydrogen with high efficiency without decreasing the hydrogen generation rate.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: July 18, 2017
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Akihito Yoshida, Shunsuke Sata, Masaki Kaga
  • Patent number: 9708716
    Abstract: Methods for the photoreduction of molecules are provided. The methods use diamond having a negative electron affinity as a photocatalyst, taking advantage of its ability to act as a solid-state electron emitter that is capable of inducing reductions without the need for reactants to adsorb onto its surface. The methods comprise illuminating a fluid sample comprising the molecules to be reduced and hydrogen surface-terminated diamond having a negative electron affinity with light comprising a wavelength that induces the emission of electrons from the diamond directly into the fluid sample. The emitted electrons induce the reduction of the molecules to form a reduction product.
    Type: Grant
    Filed: December 30, 2014
    Date of Patent: July 18, 2017
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Robert John Hamers, Di Zhu, Nigel Hajj Becknell
  • Patent number: 9687810
    Abstract: Materials such as biomass (e.g., plant biomass, animal biomass, and municipal waste biomass) and hydrocarbon-containing materials are processed to produce useful products, such as fuels. For example, systems are described that can use feedstock materials, such as cellulosic and/or lignocellulosic materials and/or starchy materials, or oil sands, oil shale, tar sands, bitumen, and coal to produce altered materials such as fuels (e.g., ethanol and/or butanol). The processing includes exposing the materials to an ion beam.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: June 27, 2017
    Assignee: XYLECO, INC.
    Inventor: Marshall Medoff
  • Patent number: 9683297
    Abstract: A process for the production of energetically rich compounds comprising: using externally supplied thermal energy to heat an electrolyzable compound to a temperature greater than the ambient temperature; generating electricity from a solar electrical photovoltaic component; subjecting the heated electrolyzable compound to electrolysis with the solar generated electricity to generate an energetically rich electrolytic product.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: June 20, 2017
    Assignee: The George Washington University
    Inventor: Stuart Licht
  • Patent number: 9675930
    Abstract: A plasma control method for an exhaust gas treating apparatus includes providing an exhaust gas treating apparatus having a plasma discharge space, a coil disposed on an outer circumference of the plasma discharge space, an upper electrode, and a lower electrode; generating plasma in the plasma discharge space; controlling the state of the plasma generated in the plasma discharge space by generating a magnetic field in the plasma discharge space between the upper electrode and the lower electrode; and cooling the reaction tube using a water cooled jacket disposed around the reaction tube. The magnetic field is generated by applying a current to the coil.
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: June 13, 2017
    Assignee: CLEAN TECHNOLOGY CO., LTD.
    Inventors: Toshio Awaji, Takashi Nakayama, Toshio Tanaka
  • Patent number: 9637830
    Abstract: Photocatalytic structures having a capillary-force based electrolyte delivery system are provided. Also provided are photoelectrochemical and photocatalytic cells incorporating the structures and methods for using the cells to generate hydrogen and/or oxygen from water. The photocatalytic structures use an electrolyte-transporting strip comprising a porous network of cellulose nanofibers to transport electrolyte from a body of the electrolyte to a porous photoelectrode or a porous photocatalytic substrate via capillary force.
    Type: Grant
    Filed: January 28, 2014
    Date of Patent: May 2, 2017
    Assignee: The United States of America as Represented by the Secretary of Agriculture
    Inventors: Xudong Wang, Zhaodong Li, Zhiyong Cai, Chunhua Yao
  • Patent number: 9630162
    Abstract: A reactor and method for production of nanostructures, including metal oxide nanowires or nanoparticles, are provided. The reactor includes a regulated metal powder delivery system in communication with a dielectric tube; a plasma-forming gas inlet, whereby a plasma-forming gas is delivered substantially longitudinally into the dielectric tube; a sheath gas inlet, whereby a sheath gas is delivered into the dielectric tube; and a microwave energy generator coupled to the dielectric tube, whereby microwave energy is delivered into a plasma-forming gas. The method for producing nanostructures includes providing a reactor to form nanostructures and collecting the formed nanostructures, optionally from a filter located downstream of the dielectric tube.
    Type: Grant
    Filed: April 4, 2012
    Date of Patent: April 25, 2017
    Assignee: University of Louisville Research Foundation, Inc.
    Inventors: Mahendra Kumar Sunkara, Jeong H. Kim, Vivekanand Kumar
  • Patent number: 9611516
    Abstract: Biomass (e.g., plant biomass, animal biomass, and municipal waste biomass) is processed to produce useful intermediates and products, such as energy, fuels, foods or materials. For example, equipment, systems and methods are described that can be used to treat feedstock materials, such as cellulosic and/or lignocellulosic materials, in a vault in which hazardous gases are removed, destroyed and/or converted. The treatments are efficient and can reduce the recalcitrance of the lignocellulosic material so that it is easier to produce an intermediate or product, e.g., sugars, alcohols, sugar alcohols and energy, from the lignocellulosic material.
    Type: Grant
    Filed: June 9, 2014
    Date of Patent: April 4, 2017
    Assignee: XYLECO, INC.
    Inventors: Marshall Medoff, Thomas Craig Masterman, Robert Paradis
  • Patent number: 9598781
    Abstract: The carbon dioxide reducing method using light includes: (a) preparing a carbon dioxide reducing cell including: a cathode chamber that holds first electrolytic solution containing carbon dioxide; an anode chamber that holds second electrolytic solution; a proton exchange membrane inserted between the cathode and anode chambers; a cathode set inside the cathode chamber to contact the first electrolytic solution, and the cathode having copper, gold, silver, indium, etc. on the cathode; and an anode set inside the anode chamber to contact the second electrolytic solution, the anode having first semiconductor layer constituted by nitride semiconductor including AlxGa1-xN layer wherein 0?x?0.
    Type: Grant
    Filed: May 19, 2014
    Date of Patent: March 21, 2017
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Masahiro Deguchi, Satoshi Yotsuhashi, Hiroshi Hashiba, Yuka Yamada
  • Patent number: 9598779
    Abstract: In a carbon dioxide reduction method according to the present disclose, used is a carbon dioxide reduction device comprising a cathode container in which a first electrolyte containing carbon dioxide is stored, an anode container in which a second electrolyte is stored, a solid electrolyte membrane, a condenser, a cathode electrode having a metal or a metal compound on the surface thereof, and anode electrode having a region formed of a nitride semiconductor layer in which a GaN layer and an AlxGa1-xN layer are stacked. The anode electrode is irradiated with light condensed by the condenser and having a wavelength of not more than 360 nanometers to reduce the carbon dioxide contained in the first electrolyte on the cathode electrode.
    Type: Grant
    Filed: November 6, 2015
    Date of Patent: March 21, 2017
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Hiroshi Hashiba, Masahiro Deguchi, Satoshi Yotsuhashi, Yuka Yamada
  • Patent number: 9593429
    Abstract: Provided are a method of fabricating a photonic crystal having a desired photonic bandgap, and a method of fabricating a color filter, including providing a photonic crystal solution in which a plurality of colloidal particles that are electrically charged are dispersed, mixing a photopolymerizable monomer mixture in the photonic crystal solution to form a photopolymerizable monomer-crystal mixture, applying an electric field to the photopolymerizable monomer-crystal mixture to electrically control intervals between the plurality of colloidal particles, and irradiating ultraviolet light to the photopolymerizable monomer-crystal mixture to photopolymerize the monomer mixture to form the photonic crystal or the color filter.
    Type: Grant
    Filed: June 14, 2013
    Date of Patent: March 14, 2017
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Moon Gyu Han, Chul-Joon Heo
  • Patent number: 9587292
    Abstract: A method of isolating 99Mo produced using a (n,?) reaction according to example embodiments may include vaporizing a source compound containing 98Mo and 99Mo. The vaporized source compound may be ionized to form ions containing 98Mo and 99Mo. The ions may be separated to isolate the ions containing 99Mo. The isolated ions containing 99Mo may be collected with a collector. Accordingly, the isolated 99Mo may have a relatively high specific radioactivity and, in turn, may be used to produce the diagnostic radioisotope, 99mTc, through radioactive decay.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: March 7, 2017
    Assignee: Advanced Applied Physics Solutions, Inc.
    Inventors: Suzanne Lapi, Thomas J. Ruth, Dirk W. Becker, John M. D'Auria