Patents Examined by Cory W Eskridge
  • Patent number: 10833018
    Abstract: A semiconductor device includes a substrate with first and second transistors disposed thereon and including sources, drains, and gates, wherein the first and second gates extend longitudinally as part of linear strips that are parallel to and spaced apart. The device further includes a first CB layer forming a local interconnect electrically connected to the first gate, a second CB layer forming a local interconnect electrically connected to the second gate, and a CA layer forming a local interconnect extending longitudinally between first and second ends of the CA layer. The first and second CB layers and the CA layer are disposed between a first metal layer and the substrate. The first metal layer is disposed above each source, drain, and gate of the transistors, The CA layer extends parallel to the first and second linear strips and is substantially perpendicular to the first and second CB layers.
    Type: Grant
    Filed: July 3, 2019
    Date of Patent: November 10, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Mahbub Rashed, Irene Y. Lin, Steven Soss, Jeff Kim, Chinh Nguyen, Marc Tarabbia, Scott Johnson, Subramani Kengeri, Suresh Venkatesan
  • Patent number: 10811416
    Abstract: A semiconductor device and method of making same. The semiconductor device includes: a first conductivity type transistor and a second conductivity type transistor, wherein each of the first conductivity type transistor and the second conductivity type includes a gate insulating film formed on a base, a metal gate electrode formed on the gate insulating film, and side wall spacers formed at side walls of the metal gate electrode, wherein the gate insulating film is made of a high dielectric constant material, and wherein offset spacers are formed between the side walls of the metal gate electrode and the inner walls of the side wall spacers in any one of the first conductivity type transistor and the second conductivity type transistor, or offset spacers having different thicknesses are formed in the first conductivity type transistor and the second conductivity type transistor.
    Type: Grant
    Filed: June 17, 2019
    Date of Patent: October 20, 2020
    Assignee: SONY CORPORATION
    Inventor: Koichi Matsumoto
  • Patent number: 10804233
    Abstract: Wafer-level (chip-scale) package semiconductor devices are described that have bump assemblies configured to maintain standoff (bump) height. In an implementation, the wafer-level chip-scale package devices include an integrated circuit chip having an array of bump assemblies disposed over the integrated circuit chip. The array of bump assemblies comprises a plurality of first bump assemblies that include solder bumps composed at least substantially of a solder composition (i.e., do not include a core). The array further includes at least one second bump assembly including a solder bump having a core configured to maintain standoff height of the wafer-level package device.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: October 13, 2020
    Assignee: MAXIM INTEGRATED PRODUCTS, INC.
    Inventors: Viren Khandekar, Karthik Thambidurai, Vivek Swaminathan Sridharan
  • Patent number: 10804097
    Abstract: Generally, the present disclosure provides example embodiments relating to conductive features, such as metal contacts, vias, lines, etc., and methods for forming those conductive features. In a method embodiment, a dielectric layer is formed on a semiconductor substrate. The semiconductor substrate has a source/drain region. An opening is formed through the dielectric layer to the source/drain region. A silicide region is formed on the source/drain region and a barrier layer is formed in the opening along sidewalls of the dielectric layer by a same Plasma-Enhance Chemical Vapor Deposition (PECVD) process.
    Type: Grant
    Filed: September 12, 2019
    Date of Patent: October 13, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Cheng-Wei Chang, Min-Hsiu Hung, Hung-Yi Huang, Chun Chieh Wang, Yu-Ting Lin
  • Patent number: 10796262
    Abstract: Interactive product auditing with a mobile device is described. Example methods disclosed herein include performing, with an auditing device, image recognition based on a first set of candidate patterns accessed by the auditing device to identify a first product in a first region of interest of a segmented image. The disclosed example methods also include prompting, with the auditing device, a user to enter input associated with a first grid of the first region of interest displayed on a display, the first grid including the first product. The disclosed example methods further include determining, with the auditing device, a second set of candidate patterns to use to identify a second product in a second region of interest of the segmented image, the second set of candidate patterns determined based on the user input and a group of products identified in a neighborhood of the first region of interest.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: October 6, 2020
    Assignee: The Nielsen Company (US), LLC
    Inventors: Diego Garcia Morate, Antonio Hurtado Garcia
  • Patent number: 10797038
    Abstract: An embodiment is a method including bonding a first package to a first set of conductive pads of a second package with a first set of solder joints, testing the first package for defects, heating the first set of solder joints by directing a laser beam at a surface of the first package based on testing the first package for defects, after the first set of solder joints are heated, removing the first package, and bonding a third package to the first set of conductive pads of the second package.
    Type: Grant
    Filed: February 25, 2016
    Date of Patent: October 6, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, An-Jhih Su, Shing-Chao Chen, Ching-Hua Hsieh, Chung-Shi Liu, Der-Chyang Yeh, Ming-Da Cheng
  • Patent number: 10790146
    Abstract: Aromatic resin polymers and compositions containing them are useful as underlayers in semiconductor manufacturing processes.
    Type: Grant
    Filed: November 2, 2017
    Date of Patent: September 29, 2020
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Shintaro Yamada, Li Cui, Christopher Gilmore, Joshua A. Kaitz, Sheng Liu, James F. Cameron, Suzanne M. Coley
  • Patent number: 10772267
    Abstract: Some embodiments provide methods and systems of controlling irrigation. Some of these systems comprise: a connector of a controller interface (CI) coupled with an irrigation controller, wherein the connector is configured to receive a valve activation signal activated by the irrigation controller; a user interface of the CI; a processor of the CI configured to obtain valve transceiver (VT) programming with VT programming being received from inputs through the user interface, determine a station identifier, and identify as defined in the VT programming a remote valve associated with the station identifier and controlled by a remote VT; and a wireless transceiver configured to wirelessly transmit a wireless activation signal configured to be wirelessly received by the VT controlling the valve associated by the VT programming with the station identifier such that the VT is configured to control an actuator to actuate the valve.
    Type: Grant
    Filed: January 2, 2019
    Date of Patent: September 15, 2020
    Assignee: Rain Bird Corporation
    Inventors: Michael James Tennyson, Angel Reyes Archundia, Frank Torre, Robert H. Jenkins, Brian Jeffrey Mueller
  • Patent number: 10754325
    Abstract: A method of manufacturing customized ceramic labial/lingual orthodontic brackets by digital light processing, said method comprises measuring dentition data of a profile of teeth of a patient, wherein measuring dentition data is performed using a CT scanner or intra-oral scanner, based on the dentition data, creating a three dimensional computer-assisted design (3D CAD) model of the patient's teeth using reverse engineering, and saving the 3D CAD model on a computer, designing a 3D CAD bracket structure model for a single labial or lingual bracket structure, importing the 3D CAD bracket structure model into a Digital Light Processing (DLP) machine, directly producing the bracket by layer manufacturing.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: August 25, 2020
    Assignee: LightForce Orthodontics, Inc
    Inventor: Alfred Charles Griffin, III
  • Patent number: 10741604
    Abstract: A semiconductor integrated circuit includes a first semiconductor substrate in which a part of an analog circuit is formed between the analog circuit and a digital circuit which subjects an analog output signal output from the analog circuit to digital conversion; a second semiconductor substrate in which the remaining part of the analog circuit and the digital circuit are formed; and a substrate connection portion which connects the first and second semiconductor substrates to each other. The substrate connection portion transmits an analog signal which is generated by a part of the analog circuit of the first semiconductor substrate to the second semiconductor substrate.
    Type: Grant
    Filed: October 16, 2018
    Date of Patent: August 11, 2020
    Assignee: Sony Corporation
    Inventor: Yoshiharu Kudoh
  • Patent number: 10720562
    Abstract: The present disclosure relates to nanoscale device comprising an elongated crystalline nanostructure, such as a nanowire crystal, a nanowhisker crystal or a nanorod crystal, and a method for producing thereof. One embodiment relates to a nanoscale device comprising an elongated crystalline semiconductor nanostructure, such as a nanowire (crystal) or nanowhisker (crystal) or nanorod (crystal), having a plurality of substantially plane side facets, a crystalline structured first facet layer of a superconductor material covering at least a part of one or more of said side facets, and a second facet layer of a superconductor material covering at least a part of the first facet layer, the superconductor material of the second facet layer being different from the superconductor material of the first facet layer, wherein the crystalline structure of the semiconductor nanostructure is epitaxially matched with the crystalline structure of the first facet layer on the interface between the two crystalline structures.
    Type: Grant
    Filed: July 10, 2019
    Date of Patent: July 21, 2020
    Assignee: University of Copenhagen
    Inventors: Peter Krogstrup, Thomas Sand Jespersen, Charles M. Marcus, Jesper Nygård
  • Patent number: 10714334
    Abstract: Generally, the present disclosure provides example embodiments relating to conductive features, such as metal contacts, vias, lines, etc., and methods for forming those conductive features. In a method embodiment, a dielectric layer is formed on a semiconductor substrate. The semiconductor substrate has a source/drain region. An opening is formed through the dielectric layer to the source/drain region. A silicide region is formed on the source/drain region and a barrier layer is formed in the opening along sidewalls of the dielectric layer by a same Plasma-Enhance Chemical Vapor Deposition (PECVD) process.
    Type: Grant
    Filed: January 2, 2018
    Date of Patent: July 14, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Cheng-Wei Chang, Huang-Yi Huang, Chun-chieh Wang, Yu-Ting Lin, Min-Hsiu Hung
  • Patent number: 10698377
    Abstract: The exemplified methods and systems facilitates the configuring of IO devices and its IO modules (and submodules) in enabling an operator to retrieve, via a single input, in a development workspace, a list of IO modules and submodules that is compatible to a given IO device. The exemplified methods and systems facilitates retrieval of compatible IO modules and submodules based parameters of the IO modules and submodules. The exemplified methods and systems provide an intuitive interface, in a development workspace for configuring an IO device, to add a retrieved (i.e., searched) module or submodule from a list thereof to an existing project for a given IO device.
    Type: Grant
    Filed: June 20, 2016
    Date of Patent: June 30, 2020
    Assignee: INTELLIGENT PLATFORMS, LLC
    Inventors: Abitha Beevi Mohammed Siddique, Venkatesh Mani Selvaraj, Balajose Goli, Vishal Fogla, Shantanu Ratnakar Rao Choudhary
  • Patent number: 10685896
    Abstract: An integrated circuit package including an integrated circuit component, a patterned dielectric liner, an insulating encapsulation, and a redistribution circuit structure is provided. The integrated circuit component includes an active surface and conductive vias distributed on the active surface. The patterned dielectric liner conformally covers the active surface of the integrated circuit component and sidewalls of the conductive vias. The insulating encapsulation encapsulates sidewalls of the integrated circuit component and covers the patterned dielectric liner. The insulating encapsulation includes a planar top surface. The planar top surface of the insulating encapsulation is substantially coplanar with top surfaces of the conductive vias. The insulating encapsulation and the conductive vias are spaced apart by the patterned dielectric liner.
    Type: Grant
    Filed: April 13, 2017
    Date of Patent: June 16, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Zi-Jheng Liu, Hung-Jui Kuo, Yu-Hsiang Hu
  • Patent number: 10680036
    Abstract: A magnetic cell includes magnetic, secondary oxide, and getter seed regions. During formation, a diffusive species is transferred from a precursor magnetic material to the getter seed region, due to a chemical affinity elicited by a getter species. The depletion of the magnetic material enables crystallization of the depleted magnetic material through crystal structure propagation from a neighboring crystalline material, without interference from the now-enriched getter seed region. This promotes high tunnel magnetoresistance and high magnetic anisotropy strength. Also during formation, another diffusive species is transferred from a precursor oxide material to the getter seed region, due to a chemical affinity elicited by another getter species. The depletion of the oxide material enables lower electrical resistance and low damping in the cell structure. Methods of fabrication and semiconductor devices are also disclosed.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: June 9, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej S. Sandhu, Sumeet C. Pandey
  • Patent number: 10654193
    Abstract: Methods for controlling the surface profiles of wafers sliced from an ingot with a wire saw include measuring an amount of displacement of a sidewall of a frame of the wire saw. The sidewall is connected to a bearing of a wire guide supporting a wire web in the wire saw. Based on the measured amount of displacement of the sidewall, a pressure profile for adjusting a position of the sidewall is determined by a computing device. Pressure is applied to the sidewall using a displacement device according to the determined pressure profile to control the position of the sidewall.
    Type: Grant
    Filed: May 16, 2019
    Date of Patent: May 19, 2020
    Assignee: GlobalWafers Co., Ltd.
    Inventors: Peter D. Albrecht, Carlos Zavattari, Sumeet S. Bhagavat, Vandan Tanna, Uwe Hermes
  • Patent number: 10658576
    Abstract: A method of manufacturing a magnetoresistive stack/structure comprising (a) etching through a second magnetic region to (i) provide sidewalls of the second magnetic region and (ii) expose a surface of a dielectric layer, (b) depositing a first encapsulation layer on the sidewalls of the second magnetic region and over a surface of the dielectric layer, (c) thereafter: (i) etching the first encapsulation layer which is disposed over the dielectric layer using a first etch process, and (ii) etching re-deposited material using a second etch process, wherein, after such etching, a portion of the first encapsulation layer remains on the sidewalls of the second magnetic region, (d) etching (i) through the dielectric layer to form a tunnel barrier and provide sidewalls thereof and (ii) etching the first magnetic region to provide sidewalls thereof, and (e) depositing a second encapsulation layer on the sidewalls of the tunnel barrier and first magnetic region.
    Type: Grant
    Filed: September 24, 2019
    Date of Patent: May 19, 2020
    Assignee: Everspin Technologies, Inc.
    Inventors: Sarin A. Deshpande, Kerry Joseph Nagel, Chaitanya Mudivarthi, Sanjeev Aggarwal
  • Patent number: 10649106
    Abstract: In one aspect, a method includes continuously combining seismic migration results using a massively parallel processing (MPP) database. In another aspect, an apparatus includes electronic hardware circuitry configured to continuously combine seismic migration results using a massively parallel processing (MPP) database. In a further aspect, an article includes a non-transitory computer-readable medium that stores computer-executable instructions. The instructions cause a machine to continuously combine seismic migration results using a massively parallel processing (MPP) database.
    Type: Grant
    Filed: September 18, 2015
    Date of Patent: May 12, 2020
    Assignee: EMC IP Holding Company LLC
    Inventors: Angelo Ciarlini, Edward Pacheco, Luiz Guilherme Santos
  • Patent number: 10634993
    Abstract: A method can be used to generate a fluid droplet pattern for an imprint lithography process using a fluid dispense system having fluid dispense ports. The method can include determining a fluid droplet pattern for dispensing a formable material onto a substrate; during a first pass, dispensing the formable material onto the substrate to form a first part of the fluid droplet pattern for an imprint field; offsetting the fluid dispense ports and substrate relative to each other in an offset direction; and during a second pass, dispensing the formable material onto the substrate to form a second part of the fluid droplet pattern for the imprint field. The method can be used to form a patterned layer over a semiconductor wafer in fabricating an electronic device. An apparatus can be configured to carry out the method.
    Type: Grant
    Filed: December 12, 2016
    Date of Patent: April 28, 2020
    Assignee: CANON KABUSHIKI KAISHA
    Inventor: Edward Brian Fletcher
  • Patent number: 10629831
    Abstract: The yield of a separation process is improved. The mass productivity of a display device which is formed through a separation process is improved. A layer is formed over a substrate with use of a material including a resin or a resin precursor. Next, a resin layer is formed by performing heat treatment on the layer. Next, a layer to be separated is formed over the resin layer. Then, the layer to be separated and the substrate are separated from each other. The heat treatment is performed in an atmosphere containing oxygen or while supplying a gas containing oxygen.
    Type: Grant
    Filed: July 24, 2017
    Date of Patent: April 21, 2020
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Masakatsu Ohno, Kayo Kumakura, Hiroyuki Watanabe, Seiji Yasumoto, Satoru Idojiri, Hiroki Adachi