Patents Examined by David Chen
  • Patent number: 10199380
    Abstract: An integrated circuit containing an array of SRAM cells with T-shaped contacts in the inverters, in which drain connecting segments may extend beyond gate connecting segments by a distance greater than 10 percent of a separation distance between ends of opposite drain connecting segments. The drain connecting segments may also extend beyond gate connecting segments by a distance greater than one-third of the width of the gate connecting segments. A process of forming an integrated circuit containing an array of SRAM cells with T-shaped contacts in which drain connecting segments may extend beyond gate connecting segments by a distance greater than 10 percent of a separation distance between ends of opposite drain connecting segments. A process may also form the drain connecting segments to extend beyond gate connecting segments by greater than one-third of the width of the gate connecting segments.
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: February 5, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Theodore W. Houston, Thomas J. Aton, Scott W. Jessen
  • Patent number: 10192754
    Abstract: A method for producing an epitaxial silicon wafer, including a preliminary thermal treatment step of subjecting a silicon wafer to thermal treatment for increasing a density of oxygen precipitates, the silicon wafer being one that has an oxygen concentration in a range of 9×1017 atoms/cm3 to 16×1017 atoms/cm3, contains no dislocation cluster and no COP, and contains an oxygen precipitation suppression region, and an epitaxial layer forming step of forming an epitaxial layer on a surface of the silicon wafer after the preliminary thermal treatment step. The production method further includes a thermal treatment condition determining step of determining a thermal treatment condition in the preliminary thermal treatment step, based on a ratio of the oxygen precipitation suppression region of the silicon wafer before the preliminary thermal treatment step is carried out.
    Type: Grant
    Filed: April 21, 2015
    Date of Patent: January 29, 2019
    Assignee: SUMCO CORPORATION
    Inventors: Jun Fujise, Toshiaki Ono
  • Patent number: 10181478
    Abstract: An electronic component made up of field-effect transistor (FET) cells is disclosed. Each FET cell includes a finger region having drain, gate, and source fingers disposed over a semiconductor substrate. An isolation region extends across a first end of the finger region. An off-state linearization region abuts the first end of the isolation region. A doped well is disposed within the off-state linearization region over the semiconductor substrate. A dielectric layer is disposed over the doped region. A first conductive stripe is disposed over the dielectric layer in longitudinal alignment with the drain finger. A second conductive stripe is disposed over the dielectric layer in longitudinal alignment with the drain finger. A drain finger electrode is aligned over and coupled to both the drain finger and the first conductive stripe. A source finger electrode is aligned over and coupled to both the source finger and the second conductive stripe.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: January 15, 2019
    Assignee: Qorvo US, Inc.
    Inventors: Baker Scott, George Maxim, Dirk Robert Walter Leipold
  • Patent number: 10177286
    Abstract: A light-emitting element package, according to one embodiment of the present invention, comprises: a circuit board including first and second regions having different heights; light-emitting elements respectively disposed in the first and second regions; and phosphor layers respectively disposed on the light-emitting elements, wherein the light-emitting elements are disposed within a 100-?m distance in the horizontal direction.
    Type: Grant
    Filed: March 25, 2014
    Date of Patent: January 8, 2019
    Assignee: LG INNOTEK CO., LTD.
    Inventors: In Yong Park, Gun Kyo Lee, Jong Woo Lee, Ju Young Lee, Yun Min Cho
  • Patent number: 10163911
    Abstract: An integrated circuit containing an array of SRAM cells with T-shaped contacts in the inverters, in which drain connecting segments may extend beyond gate connecting segments by a distance greater than 10 percent of a separation distance between ends of opposite drain connecting segments. The drain connecting segments may also extend beyond gate connecting segments by a distance greater than one-third of the width of the gate connecting segments. A process of forming an integrated circuit containing an array of SRAM cells with T-shaped contacts in which drain connecting segments may extend beyond gate connecting segments by a distance greater than 10 percent of a separation distance between ends of opposite drain connecting segments. A process may also form the drain connecting segments to extend beyond gate connecting segments by greater than one-third of the width of the gate connecting segments.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: December 25, 2018
    Assignee: Texas Instruments Incorporated
    Inventors: Theodore W. Houston, Thomas J. Aton, Scott W. Jessen
  • Patent number: 10153310
    Abstract: A photon detection device includes a single photon avalanche diode (SPAD) disposed in a semiconductor layer. A guard ring structure is disposed in the semiconductor layer surrounding the SPAD to isolate the SPAD. A well region is disposed in the semiconductor layer surrounding the guard ring structure and disposed along an outside perimeter of the photon detection device. A contact region is disposed in the well region only in a corner region of the outside perimeter such that there is no contact region disposed along side regions of the outside perimeter. A distance between an inside edge of the guard ring structure and the contact region in the corner region of the outside perimeter is greater than a distance between the inside edge of the guard ring structure and the side regions of the outside perimeter such that an electric field distribution is uniform around the photon detection device.
    Type: Grant
    Filed: July 18, 2016
    Date of Patent: December 11, 2018
    Assignee: OmniVision Technologies, Inc.
    Inventors: Bowei Zhang, Vincent Venezia, Gang Chen, Dyson H. Tai, Duli Mao
  • Patent number: 10147650
    Abstract: A semiconductor device includes a first fin-type pattern and a second fin-type pattern which protrude upwardly from an upper surface of a field insulating film and extend in a first direction. A gate structure intersects the first fin-type pattern and the second fin-type pattern. A first epitaxial layer is on the first fin-type pattern on at least one side of the gate structure, and a second epitaxial layer is on the second fin-type pattern on at least one side of the gate structure. A metal contact covers outer circumferential surfaces of the first epitaxial layer and the second epitaxial layer. The first epitaxial layer contacts the second epitaxial layer.
    Type: Grant
    Filed: July 15, 2016
    Date of Patent: December 4, 2018
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-Min Kim, Ji-Su Kang, Byung-Chan Ryu, Jae-Hyun Park, Yu-Ri Lee, Dong-Ho Cha
  • Patent number: 10141289
    Abstract: A semiconductor package includes a lower package with a lower semiconductor chip on a lower package substrate, and an upper package with an upper semiconductor chip on an upper package substrate. The upper semiconductor chip has a plurality of chip pads and the upper package substrate has a plurality of substrate pads. The upper package is stacked on the lower package. The chip pads have a first pitch and the substrate pads have a second pitch greater than the first pitch. The upper package substrate has a plurality of connection lines that electrically connect the substrate pads to the chip pads.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: November 27, 2018
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Taejoo Hwang
  • Patent number: 10103244
    Abstract: A method of making a semiconductor device is provided. The method includes forming a deep well (DWELL) and a well (WELL) in a first region of a substrate, the WELL adjacent a surface of the substrate so that an interface between the WELL and DWELL is exposed on the surface of the substrate. A channel for a DEMOS transistor is formed in the first region over the interface and includes a first channel formed in the WELL and a second channel formed in the DWELL. A gate layer is deposited and patterned to concurrently form in the first region a first gate for the DEMOS transistor and in a second region a second gate for an ESD device. Dopants are implanted in the first and second regions to concurrently form a drain extension of the DEMOS transistor, and an ESD diffusion region of the ESD device.
    Type: Grant
    Filed: February 17, 2016
    Date of Patent: October 16, 2018
    Assignee: Cypress Semiconductor Corporation
    Inventors: Venkatraman Prabhakar, Igor Kouznetsov
  • Patent number: 10090464
    Abstract: Variable-resistance material memories include a buried salicide word line disposed below a diode. Variable-resistance material memories include a metal spacer spaced apart and next to the diode. Processes include the formation of one of the buried salicide word line and the metal spacer. Devices include the variable-resistance material memories and one of the buried salicided word line and the spacer word line.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: October 2, 2018
    Assignee: Micron Technology, Inc.
    Inventors: Jun Liu, Michael P. Violette
  • Patent number: 10074664
    Abstract: Disclosed is a semiconductor memory device, including: a slimming structure extended from a cell structure in a direction parallel to the semiconductor substrate, the cell structure having a plurality of cell transistors stacked over a semiconductor substrate; vertical insulating materials extended in a direction crossing the semiconductor substrate and configured to divide the cell structure and the slimming structure into a plurality of memory blocks; contact plugs passing through the vertical insulating materials, respectively, within an area in which the slimming structure is formed; and junctions formed within the semiconductor substrate under the vertical insulating materials, in which the junctions are coupled to the contact plugs, respectively.
    Type: Grant
    Filed: October 9, 2015
    Date of Patent: September 11, 2018
    Assignee: SK Hynix Inc.
    Inventor: Dae Sung Eom
  • Patent number: 10056262
    Abstract: In an integrated-circuit memory, performance is increased by reducing an electrical contact resistance between a metal layer and an upper poly layer (a control gate poly). The electrical contact resistance is reduced by increasing the thickness of a silicide layer between the metal layer and the upper poly layer. The memory has a memory cell region and a non-memory cell region. The thickness of the silicide layer is typically restricted by consideration of integrated-circuit fabrication geometry for each memory cell not to exceed a predetermined aspect ratio. The present implementation allows independent optimization of the thickness of silicide layer in the memory cells region and the non-memory cell region. In particular, in the non-memory cell region, a thicker silicide layer significantly improves the contact resistance of a slit contact for components having the upper poly layer in contact with a lower poly layer (a floating gate poly).
    Type: Grant
    Filed: April 5, 2017
    Date of Patent: August 21, 2018
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventor: Keisuke Tsukamoto
  • Patent number: 10050140
    Abstract: A pseudo-Schottky diode has an n-channel trench MOSFET which includes: a cathode, an anode, and located between the cathode and the anode, the following elements: a highly n+-doped silicon substrate; an n-doped epilayer having a trench extending into the n-doped epilayer from above; p-doped body regions provided above the n-doped epilayer and between the trenches. Highly n+-doped regions and highly p+-doped regions are provided on the upper surface of the p-doped body regions. Dielectric layers are provided on the side walls of the trench. The trench is filled with a first p-doped polysilicon layer, and the bottom of the trench is formed by a second p-doped layer which is in contact with the first p-doped polysilicon layer, and the second p-doped layer determines the breakdown voltage of the pseudo-Schottky diode.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: August 14, 2018
    Assignee: ROBERT BOSCH GMBH
    Inventor: Alfred Goerlach
  • Patent number: 10049955
    Abstract: A fabrication method of a semiconductor package includes the steps of: forming a release layer on a carrier having concave portions; disposing chips on the release layer in the concave portions of the carrier; forming an encapsulant on the chips and the release layer; forming a bonding layer on the encapsulant; removing the release layer and the carrier so as to expose the active surfaces of the chips; and forming a circuit structure on the encapsulant and the chips. Since the release layer is only slightly adhesive to the chips and the encapsulant, the present invention avoids warpage of the overall structure during a thermal cycle caused by incompatible CTEs.
    Type: Grant
    Filed: April 26, 2017
    Date of Patent: August 14, 2018
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Chiang-Cheng Chang, Meng-Tsung Lee, Jung-Pang Huang, Shih-Kuang Chiu
  • Patent number: 10040681
    Abstract: A micro electro-mechanical (MEMS) device assembly is provided. The MEMS device assembly includes a first substrate that has a plurality of electronic devices, a plurality of first bonding regions, and a plurality of second bonding regions. The MEMS device assembly also includes a second substrate that is bonded to the first substrate at the plurality of first bonding regions. A third substrate having a recessed region and a plurality of standoff structures is disposed over the second substrate and bonded to the first substrate at the plurality of second bonding regions. The plurality of first bonding regions provide a conductive path between the first substrate and the second substrate and the plurality of the second bonding regions provide a conductive path between the first substrate and the third substrate.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: August 7, 2018
    Assignee: Miradia Inc.
    Inventors: Hua-Shu Wu, Yu-Hao Chien, Shih-Yung Chung, Li-Tien Tseng, Yu-Te Yeh
  • Patent number: 10032878
    Abstract: A semiconductor device includes a semiconductor body having a first surface and a second surface, at least one electrode arranged in at least one trench extending from the first surface into the semiconductor body, and a semiconductor via extending in a vertical direction of the semiconductor body within the semiconductor body to the second surface. The semiconductor via is electrically insulated from the semiconductor body by a via insulation layer. The at least one electrode extends in a first lateral direction of the semiconductor body through the via insulation layer and is electrically connected to the semiconductor via.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: July 24, 2018
    Assignee: Infineon Technologies AG
    Inventors: Andreas Peter Meiser, Markus Zundel
  • Patent number: 10017375
    Abstract: A method is provided for manufacturing a micromechanical component including a substrate and a cap connected to the substrate and together with the substrate enclosing a first cavity, a first pressure prevailing and a first gas mixture with a first chemical composition being enclosed in the first cavity. An access opening, connecting the first cavity to surroundings of the micromechanical component, is formed in the substrate or in the cap. The first pressure and/or the first chemical composition are adjusted in the first cavity. The access opening is sealed by introducing energy and heat into an absorbing part of the substrate or the cap with the aid of a laser. A recess is formed in a surface of the substrate or of the cap facing away from the first cavity in the area of the access opening for reducing local stresses occurring at a sealed access opening.
    Type: Grant
    Filed: October 12, 2016
    Date of Patent: July 10, 2018
    Assignee: ROBERT BOSCH GMBH
    Inventors: Frank Reichenbach, Till Schade, Jochen Reinmuth, Philip Kappe, Alexander Ilin, Mawuli Ametowobla, Julia Amthor
  • Patent number: 10020236
    Abstract: An apparatus comprising a first substrate, a dam structure disposed on a first side of the first substrate, and an integrated circuit (IC) memory chip coupled to the first side of the first substrate by a plurality of first conductive members. A second substrate is coupled to a second side of the first substrate by a plurality of second conductive members. A lid coupled to the second substrate encloses the IC memory chip and the first substrate. A thermal interface material (TIM) is coupled between the lid and the dam structure.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: July 10, 2018
    Assignee: Taiwan Semiconductar Manufacturing Campany
    Inventors: Tsung-Ding Wang, An-Jhih Su, Chien Ling Hwang, Jung Wei Cheng, Hsin-Yu Pan, Chen-Hua Yu
  • Patent number: 10008459
    Abstract: An embodiment ladder bump structure includes an under bump metallurgy (UBM) feature supported by a substrate, a copper pillar mounted on the UBM feature, the copper pillar having a tapering curved profile, which has a larger bottom critical dimension (CD) than a top critical dimension (CD) in an embodiment, a metal cap mounted on the copper pillar, and a solder feature mounted on the metal cap.
    Type: Grant
    Filed: January 4, 2013
    Date of Patent: June 26, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Pei-Chun Tsai, Yu-Jen Tseng, Tin-Hao Kuo, Chen-Shien Chen
  • Patent number: 10002961
    Abstract: In a semiconductor device including a bootstrap diode and a high voltage electric field transistor on a p-type semiconductor substrate, a cavity is formed in an n?-type buried layer of the semiconductor substrate to use the buried layer beneath the cavity as a drain drift region of the high voltage n-channel MOSFET, whereby a leakage current by holes that flows to the semiconductor substrate side in forward biasing of the bootstrap diode can be suppressed, and charging current for a bootstrap capacitor C1 can be increased, as well as increase in chip area can be suppressed.
    Type: Grant
    Filed: June 6, 2014
    Date of Patent: June 19, 2018
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventor: Masaharu Yamaji