Patents Examined by David Mis
  • Patent number: 7786818
    Abstract: An electronic component includes an RFID transponder, and also a security document comprises such an electronic component. The electronic component has a modulator for modulating a carrier signal, the modulator being constructed from at least two organic field effect transistors.
    Type: Grant
    Filed: December 6, 2005
    Date of Patent: August 31, 2010
    Assignee: PolyIC GmbH & Co. KG
    Inventors: Markus Bohm, Walter Fix, Andreas Ullmann
  • Patent number: 7786816
    Abstract: An oscillating signal in an oscillator is caused to phase shift toward the phase of an input signal coupled to the oscillating signal. The resonant frequency of the oscillator is about equal to an integer multiple of the frequency of the input signal. The input signal may be generated in a pulse generator to have an input pulse duration less than or equal to that of the oscillating signal. The oscillator circuit may be used as a filter to filter pulse width variations or to filter jitter from a reference clock. The oscillator circuit may also serve as a buffer by amplifying the input signal. Phase interpolation can be obtained by coupling at least one input signal with at least one oscillating signal.
    Type: Grant
    Filed: July 28, 2008
    Date of Patent: August 31, 2010
    Assignee: Rambus Inc.
    Inventors: William J. Dally, Ramin Farjad-Rad, John W. Poulton, Thomas H. Greer, III, Hiok-Tiaq Ng, Teva J. Stone
  • Patent number: 7782128
    Abstract: A sign detection device including a first comparing device for comparing a first input signal with a first threshold signal in a first period and a second period to generate a first output signal; a second comparing device for comparing a second input signal with a second threshold signal to generate a second output signal; a converter for optionally changing the polarity of the second output signal to obtain a third output signal; and an operator coupled to the first comparing device and the converter for performing a logic operation of the first output signal and the third output signal to obtain polarity information of the product of the first input signal and the second input signal.
    Type: Grant
    Filed: July 26, 2007
    Date of Patent: August 24, 2010
    Assignee: Mstar Semiconductor, Inc.
    Inventor: Fucheng Wang
  • Patent number: 7782149
    Abstract: A power source, a primary inductor, a load capacitance, and one or more tuned branch resonators and switching devices are coupled to generate pulses which represent a superposition of sinusoidal waveforms. The primary inductor is connected between the power source and the load. At the start of each cycle the load is coupled to ground and each tuned-branch resonators is reinitialized to re-energize the circuits and to stabilize the waveform when the frequencies of the sinusoidal waveforms are non-periodic.
    Type: Grant
    Filed: January 19, 2009
    Date of Patent: August 24, 2010
    Inventor: William C. Athas
  • Patent number: 7782154
    Abstract: A power amplifier including a loop filter, a frequency generator, a quantizer, and an output stage module is provided. The frequency generator outputs a signal with a reference frequency to the loop filter, and includes a logic circuit, a current array, and a dummy load. The dummy load representing a load circuit in the loop filter is coupled to the current array. An equivalent impedance of the dummy load is proportioned to an equivalent impedance of the load circuit. The current array outputs the signal and a dummy signal to the loop filter and the dummy load, respectively, according to a logic signal. By using the frequency generator to modulate the frequency automatically, an impact on the power amplifier caused by passive devices therein due to process variationscan be reduced.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: August 24, 2010
    Assignee: Industrial Technology Research Institute
    Inventors: Hsin-Hong Hou, Chung-Wei Lin
  • Patent number: 7777587
    Abstract: The rising edge of a pulse width modulated output signal occurs after an input ramp signal starts to rise. The ramp signal starts to rise after the rising edge of a periodic set signal and before the falling edge of a periodic set signal. A feedback control signal intersects a substantially linear region of the ramp signal to generate a reset signal using a PWM comparator. The periodic set signal and reset signal are input to a latching circuit to generate the pulse width modulated output signal. The minimum pulse width can approach zero while having adequate overdrive to the PWM comparator. Having the rising edge of the reset signal rise before the falling edge of the set signal can allow a zero percent duty cycle without the need for a ramp offset voltage.
    Type: Grant
    Filed: August 6, 2008
    Date of Patent: August 17, 2010
    Assignee: International Rectifier Corporation
    Inventors: Brian Stevenson, Parviz Parto, Yang Chen
  • Patent number: 7777554
    Abstract: A temperature detector includes a plurality of temperature sensors each configured to generate a voltage signal in accordance with sensed temperature and output the voltage signal, a plurality of storage circuits corresponding to the respective temperature sensors and each configured to store a signal level input to the storage circuit and output the stored signal level in response to a control signal, and a control circuit configured to exclusively select one of the voltage signals output from the respective temperature sensors, compare the selected voltage signal with a predetermined reference voltage, and store the selected voltage signal into the corresponding storage circuit sequentially in response to the control signal.
    Type: Grant
    Filed: July 6, 2007
    Date of Patent: August 17, 2010
    Assignee: Ricoh Company, Ltd.
    Inventor: Yasutoshi Hirano
  • Patent number: 7777576
    Abstract: An embodiment of the present invention provides a phase locked loop that operates on clock signals derived from an RF clock signal generated by the phase locked loop. A frequency reference input provides a reference clock. A controllable oscillator generates the RF clock signal. A phase detection circuit operates on the reference clock to provide digital phase error samples indicative of a phase difference between the reference clock and the RF clock. A programmable filter is connected to receive the phase error samples and connected to provide a filtered output having a gain and a phase margin to the controllable oscillator. The programmable filter includes a proportional loop gain control having a programmable loop gain coefficient (alpha—?) and an integral loop gain control having a programmable loop gain coefficient (rho—?). Alpha and rho are configured to be programmatically changed simultaneously and are selected such that the gain is changed and the phase margin remains substantially unchanged.
    Type: Grant
    Filed: June 11, 2008
    Date of Patent: August 17, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Khurram Waheed, John Wallberg, Robert Bogdan Staszewski, Sudheer Vemulapalli
  • Patent number: 7777577
    Abstract: In a method and apparatus for controlling damping and bandwidth in a phase locked loop (PLL), a loop filter is configured to have a dual path for charge pump current. A 3 dB bandwidth of the PLL is controlled by adjusting gain of a proportional current path. An integral current path includes a gating circuit to digitally control an amount of time an integral charge pump current received is passed through as an effective integral charge pump current. A resistor and capacitor (RC) circuit filters the proportional and effective integral charge pump currents, thereby providing a filtered input to a voltage controlled oscillator. Damping and hence peaking of the PLL is precisely controlled by sampling one of every p samples of the integral charge pump current to provide the effective integral charge pump current, p being an integer.
    Type: Grant
    Filed: August 21, 2008
    Date of Patent: August 17, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Richard Ellis Jennings, Md Anwar Sadat, John Thomas Wilson
  • Patent number: 7777579
    Abstract: According to one exemplary embodiment, a local oscillation generator includes a mixing stage for receiving a primary frequency and one of a number of related frequencies. The local oscillation generator further includes a first transconductance stage to provide a first related frequency to the mixing stage when a first switch selectably enables a first power path in the first transconductance stage. The local oscillation generator further includes a second transconductance stage to provide a second related frequency to the mixing stage when a second switch selectably enables a second power path in the second transconductance stage. The local oscillation generator further includes a number of dividers, where an output of a first divider provides the first related frequency to an input of the first transconductance stage, and where an output of a second divider provides the second related frequency to an input of the second transconductance stage.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: August 17, 2010
    Assignee: Broadcom Corporation
    Inventor: Qiang Li
  • Patent number: 7772936
    Abstract: Polar feedback architecture. A polar modulator, as may be implemented within a transmitter module, of a communication device includes feedback. This feedback involves monitoring of phase information and magnitude/amplitude information of an output signal generated by the polar modulator. The output signal can be a radio frequency (RF) signal such as may be transmitted via a communication channel within a communication system. A baseband processing module processes the monitored phase information and magnitude/amplitude information to perform adjustment of a phase modulator and/or other components within the polar modulator.
    Type: Grant
    Filed: May 5, 2008
    Date of Patent: August 10, 2010
    Assignee: Broadcom Corporation
    Inventor: Sofoklis Plevridis
  • Patent number: 7772931
    Abstract: There is provided an oscillator including: a reference signal generator that generates a reference signal having a reference frequency; a phase comparator that outputs a voltage in accordance with a phase difference between the reference signal and a feedback signal; a loop filter that receives a voltage output from the phase comparator, and gain-adjusts a voltage output from the phase comparator by means of an external control signal; a voltage controlled oscillator that oscillates an output signal at a frequency in accordance with an adjusted signal having been gain-adjusted by the loop filter; and a frequency divider that feeds back a frequency-divided signal resulting from frequency-dividing the output signal, to the phase comparator as the feedback signal.
    Type: Grant
    Filed: June 8, 2008
    Date of Patent: August 10, 2010
    Assignee: Advantest Corporation
    Inventor: Masayuki Nakamura
  • Patent number: 7772935
    Abstract: A power source circuit for an oscillator is provided comprising a multiplexer, a plurality of transmission gates, a plurality of resistors, a current source circuit, and an output circuit. The multiplexer inputs a digital signal and outputs one or more control signals. The transmission gates is individually coupled to the multiplexer and receives the one or more control signals, wherein each of the plurality of transmission gates are turned on or off according to the one or more control signals. The plurality of resistors is coupled in series and individually coupled to the plurality of transmission gates. The current source circuit is coupled to the plurality of resistors and provides a current source. The output circuit is coupled to the current source and provides output power for the oscillator according to the current source and the operation of the transmission gates.
    Type: Grant
    Filed: March 6, 2008
    Date of Patent: August 10, 2010
    Assignee: Princeton Technology Corporation
    Inventor: Shiun-Dian Jan
  • Patent number: 7772928
    Abstract: An apparatus for the phase synchronization of several devices, wherein one device is the master device and the other devices are slave devices, with a phase synchronization unit for every device, each of which has: a first controlled oscillator for producing a master reference signal, a first phase detector which, in order to control the first oscillator, compares the phase of a first comparison signal derived from the master reference signal with the phase of a second comparison signal derived from an auxiliary reference signal if the device is itself the master device and a second phase detector which, in order to control the first oscillator, compares the phase of a third comparison signal derived from the master reference signal with the phase of a reference signal coming from the phase synchronization unit of the master device if the device is not itself the master device but a slave device.
    Type: Grant
    Filed: January 4, 2007
    Date of Patent: August 10, 2010
    Assignee: Rohde & Schwarz GmbH & Co. KG
    Inventor: Georg Ortler
  • Patent number: 7768356
    Abstract: A dynamic oscillating ring circuit is described, which has multiple non-inverting domino circuits, each having a signal input, a trigger input, inputs for charge state clock and clocked cutoff and an output inverter. A number of the domino circuits are coupled in series, the output of one feeding the input of the next, to form a chain, which form stages of the ring. A number of the stages are coupled in series, the output of one feeding the input of the next, to form the ring. The first domino circuit of said chain receives a logic signal input and a single trigger input for the chain. Within the ring, the output of each stage feeds the input signal to the next stage and is fed back to clock an earlier stage to allow the ring to oscillate.
    Type: Grant
    Filed: August 19, 2008
    Date of Patent: August 3, 2010
    Inventor: Robert P Masleid
  • Patent number: 7764139
    Abstract: Apparatus and methods for adjusting spectral characteristics of a polar modulation signal in a polar modulator are described. A detection circuit is configured to determine when an FM signal component of the modulation signal exceeds a threshold value. The output of the detection circuit is coupled with FM and AM mapping circuits to selectively map the FM signal component and an AM signal component of the modulation signal to mapped signals, thereby reducing FM deviation.
    Type: Grant
    Filed: November 28, 2008
    Date of Patent: July 27, 2010
    Assignee: Quintic Holdings
    Inventor: John B. Groe
  • Patent number: 7760041
    Abstract: Otherwise conventional pulse-width modulators (PWMs) generate signals that can be converted into other forms by reshapers, and thereby overcome many of the problems of conventional PWMs in applications that demand high performance, such as switched-mode amplifiers and radio-frequency transmitters in modern communication systems. With a suitable reshaper, a conventional PWM differential signal can be converted into a signal more typical of linear amplification with nonlinear components (LINC) and still retain low-frequency information, such as the information needed for linearization of a switched-mode amplifier. Apparatus and methods of transforming signals are disclosed.
    Type: Grant
    Filed: May 27, 2008
    Date of Patent: July 20, 2010
    Assignee: Telefonaktiebolaget L M Ericsson (publ)
    Inventor: Carl Bryant
  • Patent number: 7760038
    Abstract: Provided is a voltage controlled oscillator having a new type of a resonator and a negative resistance part capable of finely tuning negative resistance. Thus, the voltage controlled oscillator has an excellent quality factor characteristic and can finely tune the negative resistance even after its fabrication is completed. The voltage controlled oscillator having an active element includes: a resonating unit for generating an oscillation frequency according to a resonance capacitance; a frequency tuning unit, connected to a source terminal of the active element, for tuning the oscillation frequency; and a negative resistance adjusting unit, connected to the frequency tuning unit, for generating a negative resistance to adjust the oscillation frequency, the negative resistance adjusting unit including a varactor diode for finely adjusting the negative resistance.
    Type: Grant
    Filed: December 7, 2005
    Date of Patent: July 20, 2010
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Yong-Deuk Lee, Cheol-Oh Jeong, Jong-Won Eun, Seong-Pal Lee, Ho-Jin Lee
  • Patent number: 7760043
    Abstract: Provided is a polar modulation apparatus capable of performing power limit with a simple configuration even when controlling a transmission power and increasing the transmission signal output power control range. A polar modulation device (1) includes an amplitude limit unit (6) for limiting an amplitude component of an amplitude signal, a D/A converter (7) for converting an inputted digital signal into an analog signal, a power control unit (8) for performing power control so that the inputted signal is an output signal based on the power control signal, a voltage control circuit (9) for supplying voltage to an amplitude modulator (11) according to the output signal from the power control unit (8), an angle modulator (10) for performing angle modulation according to a phase signal, and an amplitude modulator (11) for performing amplitude modulation on the signal subjected to angle modulation, according to the voltage supplied from the voltage control circuit (9).
    Type: Grant
    Filed: February 27, 2007
    Date of Patent: July 20, 2010
    Assignee: Panasonic Corporation
    Inventors: Maki Nakamura, Kaoru Ishida
  • Patent number: 7755438
    Abstract: There is provided a PLL circuit 15, a voltage follower 19, and an output terminal 23, and a control voltage V1 of a voltage controlled oscillator circuit in the PLL circuit 15 is outputted to the output terminal 23 via the voltage follower 19.
    Type: Grant
    Filed: June 5, 2008
    Date of Patent: July 13, 2010
    Assignee: NEC Electronics Corporation
    Inventor: Nobuyuki Morikoshi