Patents Examined by David Spalla
  • Patent number: 10084055
    Abstract: A method is presented for forming a nanosheet structure having a uniform threshold voltage (Vt). The method includes forming a conductive barrier surrounding a nanosheet, forming a first work function conducting layer over the conductive barrier layer, and forming a conducting layer adjacent the first work function conducting layer, the conducting layer defining a first region and a second region. The method further includes forming a second work function conducting layer over the second region of the conducting layer to compensate for threshold voltage offset between the first and second regions of the conducting layer.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: September 25, 2018
    Assignee: International Business Machines Corporation
    Inventors: Ruqiang Bao, Hemanth Jagannathan, Paul C. Jamison, ChoongHyun Lee, Vijay Narayanan, Koji Watanabe
  • Patent number: 10069024
    Abstract: A PCA is provided including: a semiconductor substrate; a metallic antenna, formed on one surface of the semiconductor substrate; and a first pattern structure, formed on the same surface of the semiconductor substrate as the surface on which the metallic antenna is formed, to obstruct surface waves and/or back-scattered waves.
    Type: Grant
    Filed: November 11, 2014
    Date of Patent: September 4, 2018
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Chanwook Baik, Jisoo Kyoung, Sangmo Cheon
  • Patent number: 10062754
    Abstract: A semiconductor device includes a substrate provided with an active pattern; a gate structure provided on the active pattern to cross the active pattern; and source/drain regions provided at both sides of the gate structure. The active pattern includes a first region below the gate structure and second regions at both sides of the gate structure. A top surface of each of the second regions is lower than that of the first region. The source/drain regions are provided on the second regions, respectively, and each of the source/drain regions covers partially both sidewalls of each of the second regions.
    Type: Grant
    Filed: September 19, 2014
    Date of Patent: August 28, 2018
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jinbum Kim, Bonyoung Koo, Seokhoon Kim, Chul Kim, Kwan Heum Lee, Byeongchan Lee, Sujin Jung
  • Patent number: 10062868
    Abstract: Embodiments of the present invention relate to a pixel structure and a manufacturing method thereof. The pixel structure includes: a substrate; an organic light emitting layer, disposed on the substrate; and an organic light gathering layer, disposed on a light exiting side of the organic light emitting layer, wherein light emitted from the organic light emitting layer is incident on the organic light gathering layer which is configured to gather the light emitted from the organic light emitting layer.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: August 28, 2018
    Assignee: BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Jun Cheng, Haijing Chen, Dongfang Wang, Xiangyong Kong
  • Patent number: 10062680
    Abstract: Silicon-on-insulator (SOI) complementary metal oxide semiconductor (CMOS) standard library cell circuits having gate back-bias rail(s) are disclosed. Related systems and methods are also disclosed. In one aspect, a SOI CMOS standard library cell circuit is provided that is comprised of one or more standard library cells. Each standard library cell includes one or more PMOS channel regions and one or more NMOS channel regions. Each standard library cell has one or more gate back-bias rails disposed adjacent to PMOS and NMOS channel regions. The gate back-bias rails are configured to apply bias voltages to corresponding PMOS and NMOS channel regions to adjust threshold voltages of PMOS and NMOS transistors associated with the PMOS and NMOS channel regions, respectively. Voltage biasing can be controlled to adjust timing of an IC using SOI CMOS standard library cell circuits to achieve design timing targets without including timing closure elements that consume additional area.
    Type: Grant
    Filed: May 8, 2014
    Date of Patent: August 28, 2018
    Assignee: QUALCOMM Incorporated
    Inventors: Pratyush Kamal, Yang Du
  • Patent number: 9997596
    Abstract: A tunneling field-effect transistor may be provided that includes: a substrate; a source which is formed on the substrate and into which p+ type impurity ion is injected; a drain which is formed on the substrate and into which n+ type impurity ion is injected; a plurality of vertically stacked nanowire channels which are formed on the substrate; a gate insulation layer which is formed on the plurality of nanowire channels; and a gate which is formed on the gate insulation layer. As a result, it is possible to generate a higher driving current without changing the length of the gate and the area of the channel (degree of integration).
    Type: Grant
    Filed: February 11, 2016
    Date of Patent: June 12, 2018
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Yang-Kyu Choi, Jun-Young Park
  • Patent number: 9991149
    Abstract: A transfer substrate with a compliant resin is used to bond one or more chips to a target wafer. An implant region is formed in a transfer substrate. A portion of the transfer substrate is etched to form a riser. Compliant material is applied to the transfer substrate. A chip is secured to the compliant material, wherein the chip is secured to the compliant material above the riser. The chip is bonded to a target wafer while the chip is secured to the compliant material. The transfer substrate and compliant material are removed from the chip. The transfer substrate is opaque to UV light.
    Type: Grant
    Filed: November 5, 2015
    Date of Patent: June 5, 2018
    Assignee: SKORPIOS TECHNOLOGIES, INC.
    Inventors: Damien Lambert, John Spann, Stephen Krasulick
  • Patent number: 9960106
    Abstract: A package includes a chip formed in a first area of the package and a molding compound formed in a second area of the package adjacent to the first area. A first polymer layer is formed on the chip and the molding compound, a second polymer layer is formed on the first polymer layer, and a plurality of interconnect structures is formed between the first polymer layer and the second polymer layer. A metal-insulator-metal (MIM) capacitor is formed on the second polymer layer and electrically coupled to at least one of the plurality of interconnect structures. A metal bump is formed over and electrically coupled to at least one of the plurality of interconnect structures.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: May 1, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shuo-Mao Chen, Der-Chyang Yeh, Chiung-Han Yeh
  • Patent number: 9947573
    Abstract: Lateral PiN diodes and Schottky diodes with low parasitic capacitance and variable breakdown voltage structures and methods of manufacture are disclosed. The structure includes a diode with breakdown voltage determined by a dimension between p- and n-terminals formed in an i-region above a substrate.
    Type: Grant
    Filed: September 3, 2014
    Date of Patent: April 17, 2018
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Natalie B. Feilchenfeld, Vibhor Jain, Qizhi Liu
  • Patent number: 9941129
    Abstract: A semiconductor device and a method for manufacturing the device. The method includes: depositing a first dielectric layer on a semiconductor device; forming a plurality of first trenches through the first dielectric layer; depositing an insulating fill in the plurality of first trenches; planarizing the plurality of first trenches; forming a first gate contact between the plurality of first trenches; depositing a first contact fill in the first gate contact; planarizing the first gate contact; depositing a second dielectric layer on the device; forming a plurality of second trenches through the first and second dielectric layers; depositing a conductive fill in the plurality of second trenches; planarizing the plurality of second trenches; forming a second gate contact where the second gate contact is in contact with the first gate contact; depositing a second contact fill in the second gate contact; and planarizing the second gate contact.
    Type: Grant
    Filed: June 15, 2016
    Date of Patent: April 10, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Josephine B. Chang, Paul Chang, Michael A. Guillorn
  • Patent number: 9917647
    Abstract: A combination underfill-dam and electrical-interconnect structure for an opto-electronic engine. The structure includes a first plurality of electrical-interconnect solder bodies. The first plurality of electrical-interconnect solder bodies includes a plurality of electrical interconnects. The first plurality of electrical-interconnect solder bodies, is disposed to inhibit intrusion of underfill material into an optical pathway of an opto-electronic component for the opto-electronic engine. A system and an opto-electronic engine that include the combination underfill-dam and electrical interconnect structure are also provided.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: March 13, 2018
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Sagi Varghese Mathai, Michael Renne Ty Tan, Paul Kessler Rosenberg, Wayne Victor Sorin, Georgios Panotopoulos, Susant K. Patra, Joseph Straznicky
  • Patent number: 9905557
    Abstract: A connection electrode for connecting a transistor including a semiconductor material other than an oxide semiconductor to a transistor including an oxide semiconductor material is smaller than an electrode of the transistor including a semiconductor material other than an oxide semiconductor that is connected to the connection electrode.
    Type: Grant
    Filed: July 29, 2014
    Date of Patent: February 27, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Toshihiko Saito, Kiyoshi Kato, Atsuo Isobe
  • Patent number: 9887385
    Abstract: An organic light emitting diode display device and a method for manufacturing the same are disclosed where permeation of moisture and oxygen may be prevented. The organic light emitting diode display device includes a protective members including an first inorganic film formed on a substrate to completely cover an organic light emitting diode, an organic film formed on the first inorganic film, and a second inorganic film formed on the first inorganic film and the organic film, wherein the organic film includes a first organic pattern corresponding to upper and side parts of the organic light emitting diode, and at least one second organic pattern being spaced from the first organic pattern and surrounding the first organic pattern, and the second organic pattern has an upper surface having the same height as an upper surface of the first organic pattern.
    Type: Grant
    Filed: December 30, 2014
    Date of Patent: February 6, 2018
    Assignee: LG Display Co., Ltd.
    Inventors: Yun-Ho Kook, Tae-Joon Song, Yong-Hee Han
  • Patent number: 9853032
    Abstract: A semiconductor device includes a substrate and a plurality of storage nodes on the substrate and extending in a vertical direction relative to the substrate. A lower support pattern is in contact with the storage nodes between a bottom and a top of the storage nodes, the lower support pattern spaced apart from the substrate in the vertical direction, and the lower support pattern having a first maximum thickness in the vertical direction. An upper support pattern is in contact with the storage nodes above the lower support pattern relative to the substrate, the upper support pattern spaced apart from the lower support pattern in the vertical direction, and the lower support pattern having a second maximum thickness in the vertical direction that is greater than the first maximum thickness of the lower support pattern.
    Type: Grant
    Filed: August 8, 2016
    Date of Patent: December 26, 2017
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: JungWoo Seo
  • Patent number: 9812577
    Abstract: A semiconductor structure and a method of fabricating the semiconductor structure are provided. The semiconductor structure includes a substrate; a metal gate structure on the substrate; and a spacer next to the metal gate structure having a skirting part extending into the metal gate structure and contacting the substrate. The metal gate structure includes a high-k dielectric layer and a metal gate electrode on the high-k dielectric layer.
    Type: Grant
    Filed: September 5, 2014
    Date of Patent: November 7, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Che-Cheng Chang, Tung-Wen Cheng, Chang-Yin Chen, Mu-Tsang Lin
  • Patent number: 9799747
    Abstract: A semiconductor device includes a substrate and a p-doped layer including a doped III-V material on the substrate. An n-type material is formed on or in the p-doped layer. The n-type layer includes ZnO. An aluminum contact is formed in direct contact with the ZnO of the n-type material to form an electronic device.
    Type: Grant
    Filed: March 12, 2015
    Date of Patent: October 24, 2017
    Assignee: International Business Machines Corporation
    Inventors: Joel P. de Souza, Keith E. Fogel, Jeehwan Kim, Devendra K. Sadana, Brent A. Wacaser
  • Patent number: 9799567
    Abstract: A method of fabricating a semiconductor device is disclosed. The method includes forming a gate structure over a substrate. The gate structure includes a first hard mask layer. The method also includes forming a source/drain (S/D) feature in the substrate adjacent to the gate structure, forming a sidewall spacer along sidewalls of the gate structure. The sidewall spacer has an outer edge at its upper portion facing away from the gate structure. The method also includes forming a second spacer along sidewalls of the gate structure and along the outer edge of the sidewall spacer, forming dielectric layers over the gate structure, forming a trench extending through the dielectric layers to expose the source/drain feature while the gate structure is protected by the first hard mask layer and the sidewall spacer with the second spacer. The method also includes forming a contact feature in the trench.
    Type: Grant
    Filed: October 23, 2014
    Date of Patent: October 24, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ming-Jhih Kuo, Yu-Hsien Lin, Hung-Chang Hsieh, Jhun Hua Chen
  • Patent number: 9793437
    Abstract: Described herein are solid-state devices based on graphene in a Field Effect Transistor (FET) structure that emits high frequency Electromagnetic (EM) radiation using one or more DC electric fields and periodic magnetic arrays or periodic nanostructures. A number of devices are described that are capable of generating and emitting electromagnetic radiation.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: October 17, 2017
    Assignee: p-brane LLC
    Inventor: Jay P. Morreale
  • Patent number: 9784779
    Abstract: A sensor system having a current interface includes a supply and current interface, an electronic control unit and an enhanced initialization sensor. The supply and current interface is configured to receive a supply voltage. The electronic control unit is coupled to the supply and current interface. The enhanced initialization sensor is coupled to the supply and current interface. The enhanced initialization sensor is configured to initialize the supply and current interface at a suitable current level to mitigate erroneous information.
    Type: Grant
    Filed: February 28, 2014
    Date of Patent: October 10, 2017
    Assignee: Infineon Technologies AG
    Inventors: Christoph Schroers, Christof Bodner, Simon Hainz
  • Patent number: 9776858
    Abstract: A semiconductor arrangement and method of formation are provided. The semiconductor arrangement includes a MEMS device in a MEMS area, where a first metal layer is connected to a first metal connect adjacent the MEMS area and a cap is over the MEMS area to vacuum seal the MEMS area. A first wafer portion is over and bonded to the first metal layer which connects the first metal connect to a first I/O port using metal routing. The first metal layer and the first wafer portion bond requires 10% less bonding area than a bond not including the first metal layer. The semiconductor arrangement including the first metal layer has increased conductivity and requires less processing than an arrangement that requires a dopant implant to connect a first metal connect to a first I/O port and has a better vacuum seal due to a reduction in outgassing.
    Type: Grant
    Filed: February 26, 2014
    Date of Patent: October 3, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LIMITED
    Inventors: Hsin-Ting Huang, Hsiang-Fu Chen, Wen-Chuan Tai, Chia-Ming Hung, Shao-Chi Yu, Hung-Hua Lin, Yuan-Chih Hsieh