Patents Examined by Deborah Yee
  • Patent number: 9499873
    Abstract: In a steel plate according to the present invention, a chemical composition is within a predetermined range, an ? value is 0.13 to 1.0 mass %, a ? value is 8.45 to 15.2, an yield strength is 670 to 870 N/mm2, a tensile strength is 780 to 940 N/mm2, an average grain size at ½t of the steel plate is 35 ?m or less, and a plate thickness is 25 to 200 mm. In the steel plate according to the present invention, in a case where SR is performed on the steel, a charpy absorbed energy at ?40° C. in an area in which SR is performed may be 100 J or more.
    Type: Grant
    Filed: December 3, 2013
    Date of Patent: November 22, 2016
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Naoki Saitoh, Mitsuru Sawamura, Katsumi Kurebayashi, Yasunori Takahashi, Takumi Miyake
  • Patent number: 9499890
    Abstract: According to exemplary practice of the present invention, a steel composition includes, by weight, 0.07 to 0.15% C, 9 to 11% Ni, 0.8 to 1.2% Mo, 0.05 to 0.10% V, and further includes additives and/or impurities, with the balance being Fe. An iron alloy having such composition is produced and then undergoes heat treatment that includes quenching, lamellarization according to a 30 minute holding duration and a temperature span of 625° C. to 665° C., and tempering according to a 60 minute holding duration and a temperature span of 575° C. to 605° C. Exemplary embodiments of the inventive steel afford superior material properties including yield strength of at least 129 ksi, tensile strength of at least 157 ksi, elongation of at least 23%, and Charpy impact energy of at least 112 foot-pounds at ?120° F.
    Type: Grant
    Filed: September 19, 2014
    Date of Patent: November 22, 2016
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Xian Jie Zhang
  • Patent number: 9481916
    Abstract: A method of thermomechanical shaping a final product with very high strength including the steps of: providing a coated hot-rolled and/or cold-rolled steel strip or sheet including (all percentages in wt. %): 0.04%<carbon<0.5%, 0.5%<manganese<3.5%, silicon<1.0%, 0.01%<chromium<1%, titanium<0.2%, aluminum<0.2%, phosphorus<0.1%, nitrogen<0.015% N, sulphur<0.05%, boron<0.015%, unavoidable impurities, balance iron, the steel being coated with a zinc alloy coating layer, wherein the zinc alloy includes 0.3-4.0% Mg and 0.05-6.0% Al; optionally at most 0.2% of one or more additional elements; unavoidable impurities; the remainder being zinc; cutting the steel sheet to obtain a steel sheet blank; thermomechanical shaping of the steel sheet blank to a final product with its final properties.
    Type: Grant
    Filed: March 31, 2014
    Date of Patent: November 1, 2016
    Assignee: TATA STEEL IJMUIDEN B.V.
    Inventors: Margot Julia Vlot, Ronald Theodoor Van Tol
  • Patent number: 9482005
    Abstract: There is provided an H-section steel in which a number density of oxide particles having an equivalent circle diameter of 0.005 ?m to 2.0 ?m per unit area is 100 pieces/mm2 to 5000 pieces/mm2, the oxide particles includes Ca, Al, and O as a composition, the amount of Ca is 5% or more, the amount of Al is 5% or more, and a total amount of Ca and Al is 50% or more by mass ratio excluding O in the oxide particles, a thickness of the flange is 100 mm to 150 mm, a bainite fraction in a metallographic structure of the flange is 80% or more at a strength evaluation position, and an average prior austenite grain size in the metallographic structure of the flange is 200 ?m or less at a toughness evaluation position.
    Type: Grant
    Filed: November 13, 2013
    Date of Patent: November 1, 2016
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Masaki Mizoguchi, Kazutoshi Ichikawa, Kazuaki Mitsuyasu, Hirokazu Sugiyama
  • Patent number: 9475113
    Abstract: There is provided a hot press-formed product, including a thin steel sheet formed by a hot press-forming method, and having a metallic structure that contains retained austenite at 3% to 20% by volume, whereby balance between strength and elongation can be controlled in a proper range and high ductility can be achieved.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: October 25, 2016
    Assignee: Kobe Steel, Ltd.
    Inventors: Junya Naitou, Toshio Murakami, Shushi Ikeda, Keisuke Okita
  • Patent number: 9475112
    Abstract: There is provided a hot press-formed product, including a thin steel sheet formed by a hot press-forming method, and having a metallic structure that contains bainitic ferrite at 70% to 97% by area, martensite at 27% by area or lower, and retained austenite at 3% to 20% by area, the remainder structure of which is at 5% by area or lower, whereby balance between strength and elongation can be controlled in a proper range and high ductility can be achieved.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: October 25, 2016
    Assignee: Kobe Steel, Ltd.
    Inventors: Junya Naitou, Toshio Murakami, Shushi Ikeda, Keisuke Okita
  • Patent number: 9476112
    Abstract: A steel wire rod or steel bar as hot-rolled, including: by mass %: C: 0.1 to 0.6%, Si: 0.01 to 1.5%, Mn: 0.05 to 2.5%, Al: 0.015 to 0.3%, and N: 0.0040 to 0.0150%, and P: limited to 0.035% or less and S: limited to 0.025% or less, and the balance substantially consisting of iron and unavoidable impurities, wherein a depth of d (mm) from the surface of the surface layer region with 20 HV 0.2 or more higher, relative to HV 0.2 that is the average hardness in the region where the depth from the surface is from sectional radius R×0.5 (mm) to the center satisfies the formula (1); the steel structure of the surface layer region has a ferrite fraction of 10% or less by area ratio, with the balance being one or two or more of martensite, bainite and pearlite; the steel structure where the depth from the surface is from the sectional radius R×0.
    Type: Grant
    Filed: April 1, 2013
    Date of Patent: October 25, 2016
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Kei Miyanishi, Atsushi Monden, Shingo Yamasaki, Shunta Homma
  • Patent number: 9469883
    Abstract: A carburized steel part having excellent low cycle bending fatigue strength which is comprised of a steel material which contains, by mass %, C: 0.1 to 0.6%, Si: 0.01 to 1.5%, Mn: 0.3 to 2.0, P: 0.02% or less, S: 0.001 to 0.15%, N: 0.001 to 0.03%, Al: 0.001 to 0.06%, and O: 0.005% or less and has a balance of substantially iron and unavoidable impurities and which is carburized and quenched, and then tempered, which steel part has a surface hardness of HV550 to HV800 and a core hardness of HV400 to HV500.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: October 18, 2016
    Assignees: NIPPON STEEL & SUMITOMO METAL CORPORATION, SANYO SPECIAL STEEL CO., LTD.
    Inventors: Shuji Kozawa, Manabu Kubota, Osamu Kada, Motohiro Nishikawa, Takashi Tanaka, Norimasa Tsunekage
  • Patent number: 9458519
    Abstract: A process and apparatus for quenching a metal workload from an elevated heat treating temperature are disclosed. The process includes the step of flowing a vegetable oil quenchant over the metal workload to provide a cooling rate sufficient to transform the metal substantially completely to a desired second phase comprising martensite, bainite, pearlite, or a combination thereof within a preselected time period. The apparatus includes a quenching chamber that has a base, an upper housing, a door, and an associated actuator for opening and closing the quenching chamber. The apparatus also includes a vessel for holding a volume of a vegetable oil quenchant, means for conducting the vegetable oil quenchant from the vessel to the quenching chamber, and means disposed in the quenching chamber for flowing the vegetable oil quenchant over a metal workload disposed in the quenching chamber.
    Type: Grant
    Filed: September 11, 2013
    Date of Patent: October 4, 2016
    Assignee: IPSEN, INC.
    Inventors: Aymeric Goldsteinas, Werner Hendrik Grobler
  • Patent number: 9458520
    Abstract: This high-strength cold-rolled steel sheet having excellent uniform elongation and hole expandability contains, C: 0.01 to 0.4%; Si: 0.001 to 2.5%; Mn: 0.001 to 4.0%; P: 0.001 to 0.15%; S: 0.0005 to 0.03%; Al: 0.001 to 2.0%; N: 0.0005 to 0.01%; and O: 0.0005 to 0.01%; in which Si+Al is limited to less than 1.0%, and a balance being composed of iron and inevitable impurities, in which at a sheet thickness center portion, an average value of pole densities of the {100}<011> to {223}<110> orientation group is 5.0 or less, and a pole density of the {332}<113> crystal orientation is 4.0 or less, a metal structure contains 5 to 80% of ferrite, 5 to 80% of bainite, and 1% or less of martensite in terms of an area ratio and the total of martensite, pearlite, and retained austenite is 5% or less, and an r value (rC) in a direction perpendicular to a rolling direction is 0.70 or more and an r value (r30) in a direction 30° from the rolling direction is 1.10 or less.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: October 4, 2016
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Yuri Toda, Riki Okamoto, Nobuhiro Fujita, Kohichi Sano, Hiroshi Yoshida, Toshio Ogawa
  • Patent number: 9452792
    Abstract: A vehicle collision energy absorbing member is excellent in collision energy absorbing performance in the axial direction upon collision. The vehicle collision energy absorbing member is formed of a high strength thin steel sheet having TS of at least 980 MPa and having an n-value and a limit bending radius Rc satisfying the following Formula: Rc/t?1.31×ln(n)+5.21.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: September 27, 2016
    Assignees: JFE Steel Corporation, Honda Motor Co., Ltd.
    Inventors: Shusaku Takagi, Kaneharu Okuda, Yoshikiyo Tamai, Takeshi Fujita, Yoshitaka Okitsu, Tadashi Naito, Naoki Takaki, Tomoaki Sugiura
  • Patent number: 9429183
    Abstract: The invention relates to a method of producing a martensitic steel comprising a content of other metals such that it can be hardened by intermetallic compound and carbide precipitation, with an Al content of between 0.4% and 3%. The heat shaping temperature of the last heat shaping pass of said steel is lower than the solubility temperature of the aluminum nitrides in the steel, and the treatment temperature for each potential heat treatment after said last heat shaping pass is lower than the solid-state solubility temperature of the aluminum nitrides in said steel.
    Type: Grant
    Filed: July 16, 2013
    Date of Patent: August 30, 2016
    Assignees: SNECMA, AUBERT & DUVAL
    Inventors: Laurent Ferrer, Philippe Heritier
  • Patent number: 9399809
    Abstract: This hot-rolled ferritic stainless steel sheet has a steel composition containing, in terms of % by mass: 0.02% or less of C; 0.02% or less of N; 0.1% to 1.5% of Si; 1.5% or less of Mn; 0.035% or less of P; 0.010% or less of S; 1.5% or less of Ni; 10% to 20% of Cr; 1.0% to 3.0% of Cu; 0.08% to 0.30% of Ti; and 0.3% or less of Al, with the balance being Fe and unavoidable impurities, and the hot-rolled ferritic stainless steel sheet has a Vickers hardness of less than 235 Hv.
    Type: Grant
    Filed: February 8, 2012
    Date of Patent: July 26, 2016
    Assignee: NIPPON STEEL & SUMIKIN STAINLESS STEEL CORPORATION
    Inventors: Shinichi Teraoka, Masaaki Kobayashi, Yuuji Koyama, Junichi Hamada, Norihiro Kanno, Yoshiharu Inoue, Ken Kimura, Jun Takahashi, Shigeyuki Gotoh
  • Patent number: 9388702
    Abstract: The problem to be solved of the present invention is to provide a precipitation hardening martensitic stainless steel having excellent tissue stability, strength, toughness, and corrosion-resistance, requiring no sub-zero treatment, and having excellent productivity; and also a steam turbine long blade using the same. The problem is solved by providing a precipitation hardening martensitic stainless steel containing, by mass, 0.1% or less of C; 0.1% or less of N; 9.0% or more and 14.0% or less of Cr; 9.0% or more and 14.0% or less of Ni; 0.5% or more and 2.5% or less of Mo; 0.5% or less of Si; 1.0% or less of Mn; 0.25% or more and 1.75% or less of Ti; 0.25% or more and 1.75% or less of Al, and the rest is Fe and inevitable impurities; and a steam turbine long blade using the precipitation hardening martensitic stainless steel.
    Type: Grant
    Filed: January 15, 2013
    Date of Patent: July 12, 2016
    Assignee: MITSUBISHI HITACHI POWER SYSTEMS, LTD.
    Inventors: Shinji Oikawa, Hideo Yoda, Masahiko Arai, Hiroyuki Doi
  • Patent number: 9365914
    Abstract: A nitrogen-rich two-phase stainless steel that has corrosion resistance equal to that of standard type of two-phase stainless steel and is not susceptible to corrosion in a welding heat-affected part, wherein the austenite phase area ratio is 40-70%, the PI value expressed by formula (1) is 30-38, the NI value expressed by formula (2) is 100-140, and the ?pre expressed by formula (3) is 1350-1450. (1) PI=Cr+3.3Mo+16N (2) NI=(Cr+Mo)/N.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: June 14, 2016
    Assignee: NIPPON STEEL & SUMIKIN STAINLESS STEEL CORPORATION
    Inventors: Yusuke Oikawa, Shinji Tsuge, Hiroshige Inoue, Ryo Matsuhashi
  • Patent number: 9351547
    Abstract: A ferrous alloy is provided for coining The ferrous alloy includes a composition of: 4.00-10.80 wt % of chromium (Cr), 8.00-25.00 wt % of nickel (Ni), 3.00-6.00 wt % of copper (Cu), and a balance of iron (Fe) and incidental impurities.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: May 31, 2016
    Assignee: CRS Holdings Inc.
    Inventor: Christopher F. Pilliod
  • Patent number: 9347122
    Abstract: This high-strength cold-rolled steel sheet contains, in mass %, C: 0.02% to 0.20%; Si: 0.001% to 2.5%; Mn: 0.01% to 4.0%; P: 0.001% to 0.15%; S: 0.0005% to 0.03%; Al: 0.001% to 2.0%; N: 0.0005% to 0.01%; and O: 0.0005% to 0.01%; in which Si+Al is limited to less than 1.0%, and a balance being composed of iron and inevitable impurities, in which an area ratio of bainite in a metal structure is 95% or more, at a sheet thickness center portion being a range of ? to ? in sheet thickness from the surface of the steel sheet, an average value of pole densities of the {100}<011> to {223}<110> orientation group is 4.0 or less, and a pole density of the {332}<113> crystal orientation is 5.0 or less, and a mean volume diameter of crystal grains in the metal structure is 7 ?m or less.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: May 24, 2016
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Yoshihiro Suwa, Kazuaki Nakano, Kunio Hayashi, Riki Okamoto, Nobuhiro Fujita, Kohichi Sano
  • Patent number: 9334547
    Abstract: An iron-based alloy includes (in weight percent) carbon from about 1 to about 2 percent; manganese up to about 1 percent; silicon up to about 1 percent; nickel up to about 4 percent; chromium from about 10 to about 25 percent; molybdenum from about 5 to about 20 percent; tungsten up to about 4 percent; cobalt from about 17 to about 23 percent; vanadium up to about 1.5 percent; boron up to about 0.2 percent; sulfur up to about 0.03 percent; nitrogen up to about 0.4 percent; phosphorus up to about 0.06 percent; niobium up to about 4 percent; iron from about 35 to about 55 percent; and incidental impurities. The chromium/molybdenum ratio of the iron-based alloy is from about 1 to about 2.5. The alloy is suitable for use in elevated temperature applications, such as valve seat inserts for combustion engines.
    Type: Grant
    Filed: September 19, 2013
    Date of Patent: May 10, 2016
    Assignee: L.E. JONES COMPANY
    Inventors: Cong Yue Qiao, David Doll, Todd Trudeau, Peter Vennema
  • Patent number: 9322088
    Abstract: Provided is a high-strength steel sheet having a tensile strength of 1180 MPa or more. The high-strength steel sheet has a specific chemical composition, includes a microstructure meeting all conditions (1) to (4) as measured by specific methods at a position corresponding to one-fourth the thickness of the steel sheet, has excellent workability and low-temperature toughness, and has a tensile strength of 1180 MPa or more. (1) The microstructure includes ferrite in a volume fraction of 5% to 35% and at least one of bainitic ferrite and tempered martensite in a volume fraction of 50% or more relative to the entire microstructure. (2) The microstructure includes MA constituent in a volume fraction of 20% or less (excluding 0%) relative to the entire microstructure, where the MA constituent is a mixed phase of fresh martensite and retained austenite. (3) The microstructure includes retained austenite in a volume fraction of 5% or more relative to the entire microstructure.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: April 26, 2016
    Assignee: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Sae Mizuta, Yukihiro Utsumi
  • Patent number: 9322075
    Abstract: Provided is an ultra-fine grained, high-strength, high-toughness carbon steel wire rod manufactured through control of a microstructure by process control without addition of relatively expensive alloying elements. More particularly, the material provided is an ultra-fine grained, high-strength, high-toughness carbon steel wire rod having a microstructure including a ferrite structure having an area fraction of 60% or more and a cementite structure as a remainder, wherein an average grain diameter of ferrite grains is 15 ?m or less. Also provided is a method of manufacturing the wire rod.
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: April 26, 2016
    Assignee: POSCO
    Inventors: Dong-Hyun Kim, Woo-Gi Shin, You-Hwan Lee