Patents Examined by Deborah Yee
  • Patent number: 9062363
    Abstract: The present invention provides a hot coil for line pipe use which can reduce deviation in ordinary temperature strength and improve low temperature toughness despite the numerous restrictions in production conditions due to the coiling step and provides a method of production of the same, specifically makes the steel plate stop for a predetermined time between rolling passes in the recrystallization temperature range and performs cooling by two stages after hot rolling so as to thereby make the steel structure at the center part of plate thickness and effective crystal grain size of 3 to 10 ?m, make the total of the area ratios of bainite and acicular ferrite 60 to 99%, and make the absolute value of A-B 0 to 30% when the totals of the area ratios of bainite and acicular ferrite at any two portions are designated as respectively A and B.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: June 23, 2015
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Takuya Hara, Takeshi Kinoshita, Kazuaki Tanaka
  • Patent number: 9062359
    Abstract: Provided is bearing steel having excellent fatigue life by minimizing segregation during casting of the bearing steel and reducing the generation of large carbides in a segregation band. The high-carbon chromium bearing steel includes 0.5 wt % to 1.2 wt % of carbon (C), 0.15 wt % to 2.0 wt % of silicon (Si), 0.05 wt % to 0.45 wt % of manganese (Mn), 0.025 wt % or less (excluding 0 wt %) of phosphorus (P), 0.025 wt % or less (excluding 0 wt %) of sulfur (S), 0.1 wt % to 1.6 wt % of chromium (Cr), 0.01 wt % to 0.3 wt % of Ce, and iron (Fe) as well as other unavoidable impurities as a remainder. A method of manufacturing the steel is also provided.
    Type: Grant
    Filed: August 5, 2011
    Date of Patent: June 23, 2015
    Assignee: POSCO
    Inventor: Kwan-Ho Kim
  • Patent number: 9057122
    Abstract: Disclosed is a high-strength steel plate having a predetermined chemical composition, in which a microstructure of the steel plate at a depth of one-fourth to one half the thickness from a surface has an area fraction of bainite of 90% or more, an average lath width of bainite of 3.5 ?m or less, and a maximum equivalent circle diameter of martensite-austenite constituents in bainite of 3.0 ?m or less. The steel plate exhibits high strengths and good drop weight properties and is useful as structural materials for offshore structure, ships, and bridges, as well as materials for pressure vessels in nuclear power plants.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: June 16, 2015
    Assignee: Kobe Steel, Ltd.
    Inventors: Hiroyuki Takaoka, Eiichi Tamura
  • Patent number: 9050646
    Abstract: An automobile chassis part which is excellent in low cycle fatigue characteristics, characterized by being formed by steel which contains, by mass %, C: 0.02 to 0.10%, Si: 0.05 to 1.0%, Mn: 0.3 to 2.5%, P: 0.03% or less, S: 0.01% or less, Ti: 0.005 to 0.1%, Al: 0.005 to 0.1%, N: 0.0005 to 0.006%, and B: 0.0001 to 0.01 and has a balance of Fe and unavoidable impurities, in which 80% or more of the part structure comprises a bainite structure and in which a portion where a ratio R/t of the thickness “t” and external surface curvature radius R is 5 or less has an X-ray half width of an (211) plane of 5 (deg) or less.
    Type: Grant
    Filed: November 25, 2010
    Date of Patent: June 9, 2015
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Takaaki Fukushi, Hideyuki Nakamura, Isao Anai
  • Patent number: 9039962
    Abstract: A steel for an induction hardening including, by mass %, C: more than 0.75% to 1.20%, Si: 0.002 to 3.00%, Mn: 0.20 to 2.00%, S: 0.002 to 0.100%, Al: more than 0.050% to 3.00%, P: limited to 0.050% or less, N: limited to 0.0200% or less, O: limited to: 0.0030% or less, and the balance composing of iron and unavoidable impurities, wherein an Al content and a N content satisfy, by mass %, Al?(27/14)×N>0.050%.
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: May 26, 2015
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Manabu Kubota, Toshiharu Aiso, Kei Miyanishi
  • Patent number: 9039961
    Abstract: The invention relates to a low-nickel austenitic stainless steel with high resistance to delayed cracking and the use of the steel. The steel contains in weight % 0.02-0.15% carbon, 7-15% manganese, 14-19% chromium, 0.1-4% nickel, 0.1-3% copper, 0.05-0.3% nitrogen, the balance of the steel being iron and inevitable impurities, and the chemical composition range in terms of the sum of carbon and nitrogen contents (C+N) and the measured Md3o-temperature is inside the area defined by the points ABCD which have the following values Point Md30° C. C+N % A?80 0.1 B+7 0.1 C?40 0.40 D?80 0.40.
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: May 26, 2015
    Assignee: Outokumpu Oyj
    Inventors: Juho Talonen, Suresh Kodukula, Tero Taulavuori
  • Patent number: 9039963
    Abstract: A titanium based, ceramic reinforced alloy ingot for use in producing medical implants. An ingot is formed from an alloy having comprising from about 5 to about 35 wt. % niobium, from about 0.5 to about 3.5 wt. % silicon, and from about 61.5 to about 94.5 wt. % of titanium. The alloy has a hexagonal crystal lattice ? phase of from about 20 vol % to about 70 vol %, and a cubic body centered ? crystal lattice phase of from about 30 vol. % to about 80 vol. %. The ingot has an ultimate tensile strength of about 940 MPa or more, and a Young's modulus of about 150 GPa or less. A molten substantially uniform admixture of a niobium, silicon, and titanium alloy is formed, cast into a shape, and cooled into an ingot. The ingot may then be formed into a medical implant and optionally annealed.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: May 26, 2015
    Assignee: Pulse Technologies, Inc.
    Inventors: Andrew E. Fisk, Anatolii Demchyshyn, Mykola Kuzmenko, Sergei Firstov, Leonid Kulak
  • Patent number: 9034121
    Abstract: A low alloy steel ingot contains from 0.15 to 0.30% of C, from 0.03 to 0.2% of Si, from 0.5 to 2.0% of Mn, from 0.1 to 1.3% of Ni, from 1.5 to 3.5% of Cr, from 0.1 to 1.0% of Mo, and more than 0.15 to 0.35% of V, and optionally Ni, with a balance being Fe and unavoidable impurities. Performing quality heat treatment including a quenching step and a tempering step to the low alloy steel ingot to obtain a material, which has a grain size number of from 3 to 7 and is free from pro-eutectoid ferrite in a metallographic structure thereof, and which has a tensile strength of from 760 to 860 MPa and a fracture appearance transition temperature of not higher than 40° C.
    Type: Grant
    Filed: April 17, 2012
    Date of Patent: May 19, 2015
    Assignees: THE JAPAN STEEL WORKS,LTD., KABUSHIKI KAISHA TOSHIBA
    Inventors: Satoru Ohsaki, Kazuhiro Miki, Tsukasa Azuma, Koji Kajikawa, Shigeru Suzuki, Masayuki Yamada, Itaru Murakami, Kenichi Okuno, Liang Yan, Reki Takaku, Akihiro Taniguchi, Tetsuya Yamanaka, Makoto Takahashi, Kenichi Imai, Osamu Watanabe, Joji Kaneko
  • Patent number: 9028626
    Abstract: A method of manufacturing a high-strength galvanized steel sheet includes hot-rolling a slab to form a steel sheet; during continuous annealing, heating the steel sheet to a temperature of 750° C. to 900° C. at an average heating rate of at least 10° C./s at a temperature of 500° C. to an A1 transformation point; holding that temperature for at least 10 seconds; cooling the steel sheet from 750° C. to a temperature of (Ms point—100° C.) to (Ms point—200° C.) at an average cooling rate of at least 10° C./s; reheating the steel sheet to a temperature of 350° C. to 600° C.; holding that temperature for 10 to 600 seconds; and galvanizing the steel sheet.
    Type: Grant
    Filed: March 25, 2013
    Date of Patent: May 12, 2015
    Assignee: JFE Steel Corporation
    Inventors: Tatsuya Nakagaito, Saiji Matsuoka, Shinjiro Kaneko, Yoshiyasu Kawasaki, Yoshitsugu Suzuki
  • Patent number: 9011764
    Abstract: A nickel-chromium-cobalt-molybdenum alloy includes (in weight %) Cr 21-23%, Fe 0.05-1.5%, C 0.05-0.08%, Mn?0.5%, Si?0.25%, Co 11-13%, Cu?0.15%, Mo 8.0-10.0%, Ti 0.3-0.5%, Al 0.8-1.3%, P<0.012%, S<0.008%, B>0.002-<0.006%, Nb>0-1%, N?0.015%, Mg?0.025%, Ca?0.01%, V 0.005-0.6%, optionally W in contents between 0.02-max. 2%, Ni rest as well as smelting-related impurities, in the form of tubes, sheets, wire, bars, strips or forgings, wherein the alloy satisfies the following formula: X3=5?50, wherein X ? ? 3 = 100 * X ? ? 1 X ? ? 2 and X1=C+5N and X2=0.5Ti+Nb+0.5 V.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: April 21, 2015
    Assignee: VDM Metals GmbH
    Inventors: Jutta Kloewer, Juergen Tewes, Ralf-Udo Husemann
  • Patent number: 9005520
    Abstract: The invention concerns steels having excellent resistance over time, in a corrosive atmosphere due to oxidizing environments such as, for example, fumes or water vapor, under high pressure and/or temperature. The invention concerns a steel composition for special applications, said composition containing, by weight, about 1.8 to 11% of chromium (and preferably between about 2.3 and 10% of chromium), less than 1% of silicon, and between 0.20 and 0.45% of manganese. It has been found that it is possible to adjust the contents of the composition based on a predetermined model, selected to obtain substantially optimal properties with respect to corrosion in specific conditions of high temperature performances. Said model can involve as additive of as residue at least one element selected among molybdenum, tungsten, cobalt, and nickel.
    Type: Grant
    Filed: June 7, 2007
    Date of Patent: April 14, 2015
    Assignees: V & M France
    Inventors: Jean Leyer, Bruno Vandenberghe, Viviane Lepingle, Ghislain Louis, Annie Fouquet, Catheline Petelot, Emilie Petelot, Adeline Petelot
  • Patent number: 9005375
    Abstract: A steel sheet for cans containing 0.0060 to 0.01 mass % C and 0.02 to 0.12 mass % Nb and having the following characteristics: (i) an average ferrite grain size in a cross section in the rolling direction in a region from a surface layer of the steel sheet to a position ¼ of a sheet thickness away from the surface layer of the steel sheet is 7 ?m to 10 ?m or less, and (ii) an average ferrite grain size in a cross section in the rolling direction in a region from the position ¼ of a sheet thickness away from the surface layer of the steel sheet to a sheet thickness center portion of the steel sheet is 15 ?m or less, wherein the average ferrite grain size (1) is smaller than the average ferrite grain size (2).
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: April 14, 2015
    Assignee: JFE Steel Corporation
    Inventors: Yusuke Nakagawa, Masaki Tada, Katsumi Kojima, Hiroki Iwasa
  • Patent number: 8999084
    Abstract: A galvanized steel sheet includes a zinc plating layer which is disposed on a steel sheet containing 0.01% to 0.15% C, 0.001% to 2.0% Si, 0.1% to 3.0% Mn, 0.001% to 1.0% Al, 0.005% to 0.060% P, and 0.01% or less S on a mass basis, the remainder being Fe and unavoidable impurities, and which has a mass per unit area 20 g/m2 to 120 g/m2. An oxide of at least one selected from the group consisting of Fe, Si, Mn, Al, and P is present in a surface portion of the steel sheet that lies directly under the zinc plating layer and that extends up to 100 ?m from the surface of a base steel sheet. The amount of the oxide per unit area is 0.05 g/m2 or less in total. The steel sheet has excellent corrosion resistance, anti-powdering property during heavy machining, and strength.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: April 7, 2015
    Assignee: JFE Steel Corporation
    Inventors: Yusuke Fushiwaki, Yoshiharu Sugimoto
  • Patent number: 8999078
    Abstract: A forging heat resistant steel of an embodiment contains in percent by mass C: 0.05-0.2, Si: 0.01-0.1, Mn: 0.01-0.15, Ni: 0.05-1, Cr: 8 or more and less than 10, Mo: 0.05-1, V: 0.05-0.3, Co: 1-5, W: 1-2.2, N: 0.01 or more and less than 0.015, Nb: 0.01-0.15, B: 0.003-0.03, and a remainder comprising Fe and unavoidable impurities.
    Type: Grant
    Filed: December 23, 2011
    Date of Patent: April 7, 2015
    Assignees: Kabushiki Kaisha Toshiba, The Japan Steel Works, Ltd.
    Inventors: Masayuki Yamada, Reki Takaku, Haruki Ohnishi, Kenichi Okuno, Kenichi Imai, Kazuhiro Miki, Tsukasa Azuma, Satoru Ohsaki
  • Patent number: 8992697
    Abstract: A high strength press-formed member includes a steel sheet constituting the member including a composition including by mass %, C: 0.12% to 0.69%, Si: 3.0% or less, Mn: 0.5% to 3.0%, P: 0.1% or less, S: 0.07% or less, Al: 3.0% or less, N: 0.010% or less, Si+Al: at least 0.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: March 31, 2015
    Assignee: JFE Steel Corporation
    Inventors: Hiroshi Matsuda, Yoshimasa Funakawa, Yasushi Tanaka
  • Patent number: 8992698
    Abstract: Provided is a welding metal in which the chemical component composition thereof is appropriately controlled; an A value that is specified by a predetermined relational expression satisfies the requirement of being 3.8% to 9.0%; an X value that is specified by a predetermined relational expression satisfies the requirement of being 0.5% or greater; the area percentage of carbide particles having a circle-equivalent diameter of 0.20 ?m or greater in the welding metal is 4.0% or less; and the number of carbide particles having a circle-equivalent diameter of 1.0 ?m or greater is 1000 particles/mm2 or less. This welding metal, which can exhibit not only high strength but also good low-temperature toughness and good drop-weight characteristics, is useful as a material for a pressure vessel in a nuclear power plant.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: March 31, 2015
    Assignee: Kobe Steel. Ltd.
    Inventors: Hidenori Nako, Yoshitomi Okazaki, Ken Yamashita, Minoru Otsu, Hideaki Takauchi
  • Patent number: 8980019
    Abstract: A steel rail includes: by mass %, higher than 0.85% to 1.20% of C; 0.05% to 2.00% of Si; 0.05% to 0.50% of Mn; 0.05% to 0.60% of Cr; P?0.0150%; and the balance consisting of Fe and inevitable impurities, wherein 97% or more of a head surface portion which is in a range from a surface of a head corner portion and a head top portion as a starting point to a depth of 10 mm has a pearlite structure, a Vickers hardness of the pearlite structure is Hv320 to 500, and a CMn/FMn value which is a value obtained by dividing CMn [at. %] that is a Mn concentration of a cementite phase in the pearlite structure by FMn [at. %] that is a Mn concentration of a ferrite phase is equal to or higher than 1.0 and equal to or less than 5.0.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: March 17, 2015
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Masaharu Ueda, Jun Takahashi, Akira Kobayashi, Takuya Tanahashi
  • Patent number: 8980018
    Abstract: Ferritic stainless steel sheet for an exhaust part which has little deterioration in strength even if undergoing long term heat history and is low in cost, excellent in heat resistance and workability characterized by containing, characterized by containing, by mass %, C: less than 0.010%, N: 0.020% or less, Si: over 0.1% to 2.0%, Mn: 2.0% or less, Cr: 12.0 to 25.0%, Cu: over 0.9 to 2%, Ti: 0.05 to 0.3%, Nb: 0.001 to 0.1%, Al: 1.0% or less, and B: 0.0003 to 0.003%, having a Cu/(Ti+Nb) of 5 or more, and having a balance of Fe and unavoidable impurities.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: March 17, 2015
    Assignee: Nippon Steel & Sumikin Stainless Steel Corporation
    Inventors: Junichi Hamada, Shinichi Teraoka, Yoshiharu Inoue, Norihiro Kanno
  • Patent number: 8974610
    Abstract: A high-strength welded steel pipe is obtained by welding a seam weld portion of a steel plate that are formed in a pipe shape. In the high-strength welded steel pipe, a base metal of the steel plate includes, by mass %, C: 0.010% to 0.080%, Si: 0.01% to 0.50%, Mn: 0.50% to 2.00%, S: 0.0001% to 0.0050%, Ti: 0.003% to 0.030%, Mo: 0.05% to 1.00%, B: 0.0003% to 0.0100%, O: 0.0001% to 0.0080%, N: 0.006% to 0.0118%, P: limited to 0.050% or less, Al: limited to 0.008% or less, and the balance of Fe and inevitable impurities, Ceq is 0.30 to 0.53, Pcm is 0.10 to 0.20, [N]?[Ti]/3.4 is less than 0.003, the average grain size of the prior ? grains in heat affected zones in the steel plate is 250 ?m or less, and the prior ? grains include bainite and intragranular bainite.
    Type: Grant
    Filed: February 4, 2011
    Date of Patent: March 10, 2015
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Taishi Fujishiro, Takuya Hara, Yoshio Terada, Shinya Sakamoto, Hitoshi Asahi
  • Patent number: 8968496
    Abstract: In a press-hardening plant, a contact-cooling press (12) is provided between the furnace (11) and the press-hardening press (13). Preselected parts of the blank (18) are contact-cooled such that corresponding parts of the finished product are softer and display a lower yield point.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: March 3, 2015
    Assignee: Gestamp Hardtech AB
    Inventors: Jan Larsson, Paul Akerstrom, Daniel Berglund