Patents Examined by Delma R Fordé
  • Patent number: 11804688
    Abstract: An apparatus and method for mounting a laser rod includes a mount having a cylindrical through hole in which the laser rod is disposed. A polymer is disposed in the cylindrical through hole in an annular space between an outer diameter of the laser rod and an inner diameter of the cylindrical through hole. The laser rod is suspended in a symmetrical thermal and mechanical interface. There is open access to the ends of the laser rod for end pumping and laser cavity alignment.
    Type: Grant
    Filed: June 18, 2020
    Date of Patent: October 31, 2023
    Assignee: United States of America as represented by the Administrator of NASA
    Inventor: Donald B. Coyle
  • Patent number: 11784463
    Abstract: A tunable laser for a transceiver includes a silicon photonics substrate, first and second patterned regions each being defined in the substrate a step lower than a flat surface region of the substrate, first and second laser diode chips arranged in the first and second patterned regions, the patterned regions being configured to align the gain regions of the first and second laser diode chips with integrated couplers formed in the substrate adjacent to the first and second patterned regions to facilitate flip-bonding the first and second laser diode chips within the patterned regions, and a tuning filter coupled to the first laser diode chip and the second laser diode chip via the integrated couplers. The tuning filter is configured to receive laser light from each of the first and second laser diode chips and generate a laser output having a gain determined by each of the gain regions.
    Type: Grant
    Filed: May 9, 2022
    Date of Patent: October 10, 2023
    Assignee: MARVELL ASIA PTE LTD
    Inventors: Radhakrishnan L. Nagarajan, Masaki Kato, Nourhan Eid, Kenneth Ling Wong
  • Patent number: 11777277
    Abstract: A semiconductor laser comprises a window structure part including a low resistance active layer formed in end face regions, to have a lower resistance than an active layer located inward with respect to the end face regions. A length between the front end of the contact layer and the front end face is longer by 10 ?m or more than a length of a front-end-face side window structure part, and is shorter than a length between the front end face and the rear end of the contact layer. A length between an end of a rear side electrode on the side of the front end face and the front end face is 1.2 times or more a substrate thickness of a substrate, and is shorter than a length between the front end face and an end of the rear side electrode on the side of the rear end face.
    Type: Grant
    Filed: September 12, 2018
    Date of Patent: October 3, 2023
    Assignee: Mitsubishi Electric Corporation
    Inventor: Kyosuke Kuramoto
  • Patent number: 11764537
    Abstract: A laser system and method generate milliwatt-power pump light by a fiber-coupled laser diode with a single-mode integrated fiber housed in a pump enclosure. The milliwatt-power pump light is conveyed from the single-mode integrated fiber out of the first enclosure into one end of a single-mode fiber cable that is external to the pump enclosure. The milliwatt-power pump light is conveyed from an opposite end of the external single-mode fiber cable into one end of a single-mode resident fiber disposed internally within a laser-head enclosure. A crystal housed in the laser-head enclosure is pumped with the milliwatt-power pump light that exits into free space from an opposite end of the single-mode resident fiber onto a face of the crystal, to produce stable milliwatt-power single-mode laser light having a frequency stability of less than 3 MHz per minute. The stable milliwatt-power single-mode laser light is emitted from the laser-head enclosure.
    Type: Grant
    Filed: April 12, 2021
    Date of Patent: September 19, 2023
    Inventor: Shailendhar Saraf
  • Patent number: 11757254
    Abstract: An optoelectronic semiconductor device comprises a plurality of laser devices. Each of the laser devices is configured to emit electromagnetic radiation. The laser devices are horizontally arranged. A first laser device of the plurality of laser devices is configured to emit electromagnetic radiation having a first wavelength different from the wavelength of a further laser device of the plurality of laser devices. A difference between the first wavelength and the wavelength of the further laser device is less than 20 nm.
    Type: Grant
    Filed: August 10, 2020
    Date of Patent: September 12, 2023
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Peter Fuchs, Ann Russell, Thomas Falck, Hubert Halbritter, Bruno Jentzsch, Christian Lauer
  • Patent number: 11757251
    Abstract: A QCL may include a substrate, an emitting facet, and semiconductor layers adjacent the substrate and defining an active region. The active region may have a longitudinal axis canted at an oblique angle to the emitting facet of the substrate. The QCL may include an optical grating being adjacent the active region and configured to emit one of a CW laser output or a pulsed laser output through the emitting facet of substrate.
    Type: Grant
    Filed: October 11, 2022
    Date of Patent: September 12, 2023
    Assignee: UNIVERSITY OF CENTRAL FLORIDA RESEARCH FOUNDATION, INC.
    Inventor: Arkadiy Lyakh
  • Patent number: 11757252
    Abstract: A corrected mesa structure for a VCSEL device is particularly configured to compensate for variations in the shape of the created oxide aperture that result from anisotropic oxidation. In particular, a corrected mesa shape is derived by determining the shape of an as-created aperture formed by oxidizing a circular mesa structure, and then ascertaining the compensation required to convert the as-created shape into a desired (“target”) shaped aperture opening. The compensation value is then used to modify the shape of the mesa itself such that a following anisotropic oxidation yields a target-shaped oxide aperture.
    Type: Grant
    Filed: March 1, 2022
    Date of Patent: September 12, 2023
    Assignee: II-VI Delaware, Inc.
    Inventors: Mirko Hoser, Abram Jakubowicz, Tomi Leinonen
  • Patent number: 11735886
    Abstract: Multi-Channels coherent beam combining (CBC) using a mechanism for phase and/or polarization locking that uses a reference optical beam and an array of optical detectors each detector being configured and located to detect overall intensity of an optical interference signal caused by interfering of the reference beam and a beam of the respective channel, where the fast intensity per-channel detection allows simultaneous and quick phase/polarization locking of all channels for improving beam combining system performances.
    Type: Grant
    Filed: December 29, 2022
    Date of Patent: August 22, 2023
    Assignee: ELBIT SYSTEMS ELECTRO-OPTICS—ELOP LTD.
    Inventors: Zeev Schiffer, Andrey Nazarov, Daniel Levy
  • Patent number: 11728622
    Abstract: An optical apparatus comprises a semiconductor substrate and an optical waveguide emitter. The optical waveguide emitter comprises an input waveguide section extending from a facet of the semiconductor substrate, a turning waveguide section optically coupled with the input waveguide section, and an output waveguide section extending to the same facet and optically coupled with the turning waveguide section. One or more of the input waveguide section, the turning waveguide section, and the output waveguide section comprises an optically active region.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: August 15, 2023
    Assignee: Cisco Technology, Inc.
    Inventors: Dominic F. Siriani, Vipulkumar K. Patel, Matthew J. Traverso, Mark A. Webster
  • Patent number: 11688993
    Abstract: A method of producing a plurality of laser diodes includes providing a plurality of laser bars in a composite, wherein the laser bars each include a plurality of laser diode elements arranged side by side, and the laser diode elements include a common substrate and a semiconductor layer sequence arranged on the substrate, and a division of the composite at a longitudinal separation plane extending between two adjacent laser bars leads to formation of laser facets of the laser diodes to be produced, and structuring the composite at at least one longitudinal separation plane, wherein a structured region is produced in the substrate.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: June 27, 2023
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: John Brückner, Sven Gerhard
  • Patent number: 11670912
    Abstract: A photonic circuit with a hybrid III-V on silicon or silicon-germanium active section, that comprises an amplifying medium with a III-V heterostructure (1, QW, 2) and an optical wave guide. The wave guide comprises a coupling section (31) facing a central portion of the amplifying medium, a propagation section (34, 35) and a modal transition section (32, 33) arranged between the coupling section and the propagation section. In the modal transition section, the optical wave guide widens progressively from the propagation section towards the coupling section.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: June 6, 2023
    Assignee: COMMISSARIAT À L'ÉNERGIE ATOMIQUE ET AUX ÉNERGIES ALTERNATIVES
    Inventors: Théo Verolet, Antonin Gallet
  • Patent number: 11664643
    Abstract: Gallium and nitrogen containing optical devices operable as laser diodes and methods of forming the same are disclosed. The devices include a gallium and nitrogen containing substrate member, which may be semipolar or non-polar. The devices include a chip formed from the gallium and nitrogen substrate member. The chip has a width and a length, a dimension of less than 150 microns characterizing the width of the chip. The devices have a cavity oriented substantially parallel to the length of the chip.
    Type: Grant
    Filed: December 9, 2021
    Date of Patent: May 30, 2023
    Assignee: KYOCERA SLD Laser, Inc.
    Inventors: James W. Raring, Hua Huang
  • Patent number: 11658463
    Abstract: A light-emitting element includes a mesa structure in which a first compound semiconductor layer of a first conductivity type, an active layer, and a second compound semiconductor layer of a second conductivity type are disposed in that order, wherein at least one of the first compound semiconductor layer and the second compound semiconductor layer has a current constriction region surrounded by an insulation region extending inward from a sidewall portion of the mesa structure; a wall structure disposed so as to surround the mesa structure; at least one bridge structure connecting the mesa structure and the wall structure, the wall structure and the bridge structure each having the same layer structure as the portion of the mesa structure in which the insulation region is provided; a first electrode; and a second electrode disposed on a top face of the wall structure.
    Type: Grant
    Filed: October 9, 2020
    Date of Patent: May 23, 2023
    Assignee: Sony Group Corporation
    Inventors: Tomoyuki Oki, Yuji Masui, Yoshinori Yamauchi, Rintaro Koda, Takahiro Arakida
  • Patent number: 11646542
    Abstract: A laser oscillator includes a housing, an optical fiber disposed in the housing and including a fused portion or a curved portion, an optical absorber positioned between the housing and the fused portion or the curved portion and configured to absorb leakage light from the optical fiber, a thermally conductive support column configured to support the optical absorber, and a cooling unit configured to cool the optical absorber via the thermally conductive support column.
    Type: Grant
    Filed: January 22, 2020
    Date of Patent: May 9, 2023
    Assignee: Fanuc Corporation
    Inventor: Tetsuya Chiba
  • Patent number: 11641089
    Abstract: Some embodiments may include a packaged laser diode assembly, comprising: a length of optical fiber having a core and a polymer buffer in direct contact with the core, the length of optical fiber having a first section and a second section, the first section of the length of optical fiber including a tip of an input end of the optical fiber, wherein the polymer buffer covers only the second section of the first and second sections; one or more laser diodes to generate laser light; means for directing a beam derived from the laser light into the input end of the length of optical fiber; a light stripper attached to the core in the first section of the length of optical fiber. Other embodiments may be disclosed and/or claimed.
    Type: Grant
    Filed: September 16, 2020
    Date of Patent: May 2, 2023
    Assignee: NLIGHT, INC.
    Inventors: Shuang Li, Jiamin Zhang, Manoj Kanskar, Chendong Bai
  • Patent number: 11621537
    Abstract: The present disclosure provides an ultrafast laser that outputs multiple wavelengths. The ultrafast laser includes a fundamental frequency ultrafast laser unit, an optical beam splitting and polarization controlling unit, a multiple frequency unit, and an optical beam combining unit. The fundamental frequency ultrafast laser generates a multiple frequency ultrafast laser by the multiple frequency unit, such as double frequency light, triple frequency light, etc., and the optical beam combining unit makes the fundamental frequency light and the double frequency light output in a light outlet, the controlling unit controls the wavelength of the laser of the light outlet by controlling the polarization state of the laser. The ultrafast laser of the present disclosure can realize fast switching output among the fundamental frequency light and multiple frequency light, and output of combined pulse fundamental frequency light and double frequency light.
    Type: Grant
    Filed: August 3, 2020
    Date of Patent: April 4, 2023
    Assignee: WUHAN YANGTZE SOTON LASER CO. LTD.
    Inventors: Si Zou, Fei He, Kangkang Chen, Guruo Xu
  • Patent number: 11611188
    Abstract: Described herein are isolated ring cavities that have refractive and heat-generating components physically separated and mechanically held by flexure mounts that are adapted to function in combination with the physically separated structure to moderate the thermal expansion effects of the heat generated by the refractive and other heat-generating elements (e.g., gain element) of the optical cavity. The flexure mounts may be configured as thinned portions of connective elements, reducing the effects of thermal expansion of the baseplate and allowing a thermal isolation from the baseplate. Multiple flexure mounts may be arranged to minimize further the effects of thermal expansion of the baseplate.
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: March 21, 2023
    Assignee: Arete Associates
    Inventor: Micah Boyd
  • Patent number: 11605933
    Abstract: A laser structure may include a substrate, an active region arranged on the substrate, and a waveguide arranged on the active region. The waveguide may include a first surface and a second surface that join to form a first angle relative to the active region. A material may be deposited on the first surface and the second surface of the waveguide.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: March 14, 2023
    Assignee: MACOM Technology Solutions Holdings, Inc.
    Inventors: Ali Badar Alamin Dow, Jason Daniel Bowker, Malcolm R. Green
  • Patent number: 11600963
    Abstract: Chip technology for fabricating ultra-low-noise, high-stability optical devices for use in an optical atomic clock system. The proposed chip technology uses diamond material to form stabilized lasers, frequency references, and passive laser cavity structures. By utilizing the exceptional thermal conductivity of diamond and other optical and dielectric properties, a specific temperature range of operation is proposed that allows significant reduction of the total energy required to generate and maintain an ultra-stable laser. In each configuration, the diamond-based chip is cooled by a cryogenic cooler containing liquid nitrogen.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: March 7, 2023
    Assignee: The Boeing Company
    Inventors: Anguel Nikolov, John R. Lowell, David K. Mefford, John Dalton Williams
  • Patent number: 11594860
    Abstract: An array layout of VCSELs is intentionally mis-aligned with respect to the xy-plane of the device structure as defined by the crystallographic axes of the semiconductor material. The mis-alignment may take the form of skewing the emitter array with respect to the xy-plane, or rotating the emitter array. In either case, the layout pattern retains the desired, row/column structure (necessary for dicing the structure into one-dimensional arrays) while reducing the probability that an extended defect along a crystallographic plane will impact a large number of individual emitters.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: February 28, 2023
    Assignee: II-VI Delaware, Inc.
    Inventors: André Bisig, Bonifatius Wilhelmus Tilma, Norbert Lichtenstein