Patents Examined by Diana J Cheng
  • Patent number: 11973509
    Abstract: A phase-locked loop (PLL) that provides a local oscillator signal for a radio. An oscillator of the PLL supplies an oscillator output signal. Control logic receives a request to change the oscillator output signal to a new frequency and responds to the request by setting a first capacitor circuit of the oscillator to a first capacitance that corresponds to a predetermined frequency of the oscillator output signal. The control logic also responds to the request by setting one or more other capacitor circuits of the oscillator according to temperature and according to a frequency difference between the predetermined frequency and the new frequency. After responding to the request by setting the first capacitor circuit and the one or more other capacitor circuits, the PLL locks to the new frequency using a signal from the PLL loop filter to adjust another capacitor circuit in the oscillator.
    Type: Grant
    Filed: March 31, 2022
    Date of Patent: April 30, 2024
    Assignee: Silicon Laboratories Inc.
    Inventors: Rangakrishnan Srinivasan, Zhongda Wang, Francesco Barale, Wenhuan Yu, Mustafa H. Koroglu, Yan Zhou, Terry L. Dickey
  • Patent number: 11967965
    Abstract: Clock generation circuit generating multiple divided signals satisfying respective desired offsets. A phase locked loop (PLL) is used to generate a PLL output having a frequency which is a desired multiple of that of a reference clock. The circuit divides the PLL output by a corresponding divisor to generate a corresponding divided signal, wherein each divided signal is offset from a common reference by at least an associated desired time offset. The common reference is timed with respect to the reference clock when the reference clock is available and with respect to a time reference signal otherwise. This arrangement is extended to use the internal time reference signal even for the cases where the reference clock is present by blocking the reference clock while the output systems across PLLs are aligned using the internal time reference signal to ensure desired offsets across different PLLs with a small uncertainty.
    Type: Grant
    Filed: June 14, 2022
    Date of Patent: April 23, 2024
    Assignee: Shaoxing Yuanfang Semiconductor Co., Ltd.
    Inventors: Raja Prabhu J, Ankit Seedher, Srinath Sridharan, Rakesh Kumar Gupta, Nitesh Naidu, Shivam Agrawal, Jeevabharathi G, Purva Choudhary
  • Patent number: 11967961
    Abstract: A clock generation circuit includes a control clock generation circuit and first and second clock synchronization circuits. The control clock generation circuit compares a reference voltage with first and second feedback clock signals to generate first and second control clock signals. The first clock synchronization circuit makes the first and second feedback clock signals transit in synchronization with the first and second control clock signals. The second clock synchronization circuit generates first and second phase clock signals in synchronization with the first feedback clock signal and the second feedback clock signal.
    Type: Grant
    Filed: May 5, 2021
    Date of Patent: April 23, 2024
    Assignee: SK hynix Inc.
    Inventor: Hyun Chul Lee
  • Patent number: 11962304
    Abstract: Some embodiments of the invention include a pre-pulse switching system. The pre-pulsing switching system may include: a power source configured to provide a voltage greater than 100 V; a pre-pulse switch coupled with the power source and configured to provide a pre-pulse having a pulse width of Tpp; and a main switch coupled with the power source and configured to provide a main pulse such that an output pulse comprises a single pulse with negligible ringing. The pre-pulse may be provided to a load by closing the pre-pulse switch while the main switch is open. The main pulse may be provided to the load by closing the main switch after a delay Tdelay after the pre-pulse switch has been opened.
    Type: Grant
    Filed: March 29, 2022
    Date of Patent: April 16, 2024
    Assignee: EHT VENTURES LLC
    Inventors: Kenneth E. Miller, James R. Prager, Ilia Slobodov, Julian F. Picard
  • Patent number: 11962311
    Abstract: A sub-sampling phase locked loop includes a slope generating and sampling circuit, first and second transconductance circuits, a constant transconductance bias circuit, a loop filter and a voltage controlled oscillator. The slope generating and sampling circuit generates a sampling voltage based on a reference clock signal and an output clock signal. The first and second transconductance circuits generate first and second output control voltages based on the sampling voltage, a reference voltage and a control current. The constant transconductance bias circuit includes a switched capacitor resistor. The constant transconductance bias circuit is configured to generate the control current. The loop filter is connected to output terminals of the first and second transconductance circuits. The voltage controlled oscillator generates the output clock signal based on the first and second output control voltages.
    Type: Grant
    Filed: July 15, 2022
    Date of Patent: April 16, 2024
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Gyusik Kim, Seungjin Kim, Seunghyun Oh
  • Patent number: 11962055
    Abstract: The present disclosure relates to waveguide band-stop filter arrangement adapted to be connected to a waveguide transmission line at a filter interface, where the waveguide transmission line is adapted for a main propagation extension. The band-stop filter arrangement comprises a first pair of cavities, where each cavity in the first pair, each first pair cavity, comprises a corresponding inductive first pair aperture arrangement that is adapted to connect the corresponding first pair cavity to the waveguide transmission line. The first pair cavities are positioned adjacent each other along a stacking extension perpendicular to the main propagation extension such that they share a first common wall and are adapted to be positioned adjacent the waveguide transmission line. The first pair of cavities comprises a first capacitive aperture arrangement in the first common wall, mutually connecting the first pair cavities.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: April 16, 2024
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Anatoli Deleniv, Peter Melin, Ove Persson
  • Patent number: 11955958
    Abstract: An electronic power switch drive module for a power semiconductor unit, comprising a gate drive and a current transducer mounted on one or more circuit boards, the gate drive comprising at least one circuit portion for controlling at least one transistor of a power semiconductor module of said power semiconductor unit, the current transducer configured to be coupled to an output of the power semiconductor module for measuring an output current of the power semiconductor module, said at least one circuit portion connected to an output potential of the output current to be measured. The current transducer comprises at least one magnetic field sensor, the current transducer being connected to said at least one circuit portion of the gate drive at said output potential in a non-isolated manner.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: April 9, 2024
    Assignee: LEM International SA
    Inventors: Dominik Schläfli, Stephan Trombert
  • Patent number: 11942972
    Abstract: Apparatus and methods for radio frequency (RF) switch control are provided. In certain embodiments, a level shifter for an RF switch includes a first level-shifting n-type transistor, a first cascode n-type transistor in series with the first level-shifting n-type transistor between a negative charge pump voltage and a first output that provides a first switch control signal, a first level-shifting p-type transistor, a first cascode p-type transistor in series with the first level-shifting p-type transistor between a positive charge pump voltage and the first output, and a second cascode p-type transistor between a regulated voltage and a gate of the first level-shifting n-type transistor and controlled by a first switch enable signal.
    Type: Grant
    Filed: May 18, 2022
    Date of Patent: March 26, 2024
    Assignee: Skyworks Solutions, Inc.
    Inventors: Sachin Nagarajan, Abhishekh Devaraj, Florinel G. Balteanu, Yunyoung Choi
  • Patent number: 11923843
    Abstract: A semiconductor device of an embodiment includes a buffer configured to perform data transmission by turning on and off a first output transistor group and a second output transistor group; a first correction circuit configured to calibrate a resistance value of the buffer by controlling an on-off state of each of first transistors of the first output transistor group; a second correction circuit configured to calibrate the resistance value of the buffer by controlling an on-off state of each of second transistors of the second output transistor group; and a control circuit configured to cause the calibration by the first correction circuit to be performed in a non-communication duration other than a duration of data transmission from the buffer and cause the calibration by the second correction circuit to be performed in a duration other than a duration of the calibration by the first correction circuit.
    Type: Grant
    Filed: March 10, 2021
    Date of Patent: March 5, 2024
    Assignee: Kioxia Corporation
    Inventor: Toshihiro Yagi
  • Patent number: 11923860
    Abstract: A DCO is configured such that, during a period in which a selection signal is asserted, a ring oscillator is formed so as to oscillate at a frequency that corresponds to a control code, and such that, during a period in which the selection signal SEL is negated, an injection edge based on a reference clock can be injected. During the startup period of a PLL circuit, a controller repeats a cycle including (i) a process in which the selection signal is asserted so as to oscillate the DCO, and phase comparison is made between an oscillator clock and the reference clock, and (ii) a process in which the selection signal is negated so as to stop the DCO, and the control code is updated by a binary search based on a result of the phase comparison.
    Type: Grant
    Filed: June 3, 2022
    Date of Patent: March 5, 2024
    Assignee: ROHM CO., LTD.
    Inventor: Masanobu Tsuji
  • Patent number: 11923864
    Abstract: A phase-locked loop (PLL) is implemented to have another (second) PLL in place of the controlled oscillator. When a known frequency change in the frequency of the output clock is desired, in addition to changing a configuration of the PLL (first PLL), the configuration of the second PLL is also changed to cause the frequency of the output clock to change quickly. In various embodiments, the configuration of the second PLL is changed by changing the divisor of the feedback divider of the second PLL, the divisor in a pre-scaler in the second PLL, the control voltage of a VCO used in the second PLL, and any other point of user control in the second PLL.
    Type: Grant
    Filed: June 14, 2022
    Date of Patent: March 5, 2024
    Assignee: Shaoxing Yuanfang Semiconductor Co., Ltd.
    Inventors: Srinath Sridharan, Ankit Seedher, Raja Prabhu J, Purva Choudhary, Sandeep Sasi, Akash Gupta, Jeevabharathi G
  • Patent number: 11921157
    Abstract: A burn-in resilient integrated circuit is provided. The burn-in resilient integrated circuit includes an inverter chain and a plurality of inverter circuits on the inverter chain. The burn-in resilient integrated circuit also includes a loop providing an electrical connection from an output of the inverter chain to an input of the inverter chain. The loop is selectable in accordance with a burn-in operation.
    Type: Grant
    Filed: September 7, 2021
    Date of Patent: March 5, 2024
    Assignee: International Business Machines Corporation
    Inventors: Andreas H. A. Arp, Matthias Ringe, Thomas Makowski, Michael V. Koch, Fatih Cilek
  • Patent number: 11916616
    Abstract: In accordance with a first aspect of the present disclosure, a near field communication (NFC) device is provided, comprising: an NFC unit configured to charge an external device under charge by transferring power to said device under charge through an NFC channel; a detection unit configured to detect predefined events occurring on the NFC channel when said power is being transferred to the device under charge; a processing unit configured to control the transferring of power to the device under charge in dependence on the events detected by the detection unit. In accordance with a second aspect of the present disclosure, a corresponding method of operating a near field communication (NFC) device is conceived.
    Type: Grant
    Filed: January 31, 2022
    Date of Patent: February 27, 2024
    Assignee: NXP B.V.
    Inventors: Markus Wobak, Tushar Nagrare, Olivier Jérôme Célestin Jamin
  • Patent number: 11909406
    Abstract: An electronic device may include wireless circuitry having mixer circuitry configured to receive an oscillator signal from phase-locked loop circuitry. The phase-locked loop circuitry may include a digital or analog phase-locked loop having a first frequency divider, a ring oscillator, and an auxiliary phase noise cancellation loop coupled to the ring oscillator. The auxiliary phase noise cancellation loop may include at least a time-to-digital converter, a second frequency divider, an amplifier, and a bandpass filter configured to reject thermal and quantization noise associated with the time-to-digital converter. The first frequency divider may have a first division ratio, whereas the second frequency divider may have a second division ratio that is less than the first division ratio to provide faster phase noise correction.
    Type: Grant
    Filed: August 23, 2022
    Date of Patent: February 20, 2024
    Assignee: Apple Inc.
    Inventors: Ahmed I Hussein, Mahdi Forghani, David M Signoff
  • Patent number: 11894866
    Abstract: Embodiments presented herein provide apparatus and techniques to reduce a direct current (DC) voltage offset between a transmitter and receiver. Embodiments include a shared reference voltage signal generated by a reference voltage source. The receiver may include a first unit gain buffer to receive a reference voltage signal from the reference voltage source. The transmitter may be communicatively coupled to the receiver via one or more connections and may include a second unit gain buffer communicatively coupled to the first unit gain buffer via one of the connections. An amplifier (e.g., an operation amplifier) of the transmitter may include multiple positive inputs coupled to the second unit gain buffer and an offset tracker. The offset tracker may compensate for a DC offset caused by at least a power supply and/or a ground bounce.
    Type: Grant
    Filed: March 9, 2022
    Date of Patent: February 6, 2024
    Assignee: Apple Inc.
    Inventors: Hongrui Wang, Abbas Komijani, Xinhua Chen
  • Patent number: 11876500
    Abstract: A receiver includes a first matching circuit configured to receive antenna input power through a branch point in accordance with a radio signal received by an antenna and input a portion of the received antenna input power to a first circuit as first input power, the antenna input power being input from the antenna, and an impedance of the first matching circuit decreasing as the antenna input power increases, and a second matching circuit configured to receive the antenna input power through the branch point and input another portion of the received antenna input power to a second circuit as second input power, an impedance of the second matching circuit increasing as the antenna input power increases.
    Type: Grant
    Filed: December 7, 2021
    Date of Patent: January 16, 2024
    Assignee: FUJITSU SEMICONDUCTOR MEMORY SOLUTION LIMITED
    Inventor: Tetsuya Maruyama
  • Patent number: 11870425
    Abstract: A change rate control circuit computes a first drive speed, which is a gate drive speed of a gate of a drive-subject element, for controlling a change rate of an element voltage of the drive-subject element at a target change rate during a change period. A timing generating circuit acquires, in advance, a delay time caused when the gate is driven and determines a switching timing, at which the element voltage reaches a switching threshold voltage which is lower than a desired switching voltage by a predetermined value, during turn-off of the drive-subject element and generates a timing signal representing the switching timing. A speed change circuit changes the gate drive speed from the first drive speed to a second drive speed at the switching timing during turn-off of the drive-subject element.
    Type: Grant
    Filed: July 8, 2022
    Date of Patent: January 9, 2024
    Assignees: DENSO CORPORATION, TOYOTA JIDOSHA KABUSHIKI KAISHA, MIRISE Technologies Corporation
    Inventor: Hironori Akiyama
  • Patent number: 11870448
    Abstract: In described examples, a phase locked loop (PLL) includes a compensation circuit, a transconductance circuit, and an oscillator. The compensation circuit includes a capacitor circuit and a resistive element having a resistance responsive to a center frequency of the PLL's bandwidth. The transconductance circuit includes a current source and an error amplifier. The current source generates a current responsive to the center frequency. The error amplifier has a transconductance responsive to the center frequency, and receives a signal responsive to the resistance and a difference between an input clock signal and a feedback signal. The oscillator input is coupled to the error amplifier output. The oscillator provides a signal at its output for generating the feedback signal.
    Type: Grant
    Filed: April 27, 2022
    Date of Patent: January 9, 2024
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Florian Neveu
  • Patent number: 11870449
    Abstract: A clock generator calibration system can include a phased-locked loop and a correction circuit. The PLL can generate an output clock signal, and the correction circuit can adjust a frequency signal of the PLL based on a digital signal of the PLL. The digital signal can be generated based on the adjusted frequency signal.
    Type: Grant
    Filed: December 28, 2019
    Date of Patent: January 9, 2024
    Assignee: Intel Corporation
    Inventors: Elan Banin, Yaniv Cohen, Ofir Degani, Igal Kushnir
  • Patent number: 11863172
    Abstract: A single live line switch circuit includes a single live line connecting end, a switch unit, two wire channels, an on-state power obtaining circuit, an off-state power obtaining circuit, and an energy storage element. The single live line connecting end is connected to an external single live line. The on-state power obtaining circuit is connected to the single live line connecting end. The switch unit includes a fixed connecting end and a movable connecting end, and the fixed connecting end is connected to the on-state power obtaining circuit. The two wire channels are provided with a first connecting end and a second connecting end, respectively, and the movable connecting end of the switch unit is in contact with the first connecting end or the second connecting end. A control method of the single live line switch circuit is provided.
    Type: Grant
    Filed: May 31, 2021
    Date of Patent: January 2, 2024
    Assignee: JOULWATT TECHNOLOGY CO., LTD.
    Inventor: Hao Long