Patents Examined by Douglas B Call
  • Patent number: 10207924
    Abstract: Methods and devices are provided for producing syngas with an adjustable molar CO/H2 ratio. Syngas can have different proportions of CO and H2 (molar CO/H2 ratio) depending on the type and composition of starting materials. To set the desired molar CO/H2 ratio, a first sub-process is combined with at least one additional sub-process selected from: a sub-process T2 by which a second syngas B is generated from the starting material, the syngas having a molar ratio (V2) of CO to H2, wherein V1?V2; a sub-process T3 by which the hydrocarbon(s) of the hydrocarbon-containing starting material is/are split substantially into solid carbon and hydrogen; and a sub-process T4 based on the reaction equation: CO+H2O?2CO2+H2. The methods and devices are suitable for producing syngas useful as a starting material in a plurality of chemical syntheses, for example oxo, Fischer-Tropsch, or Reppe syntheses.
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: February 19, 2019
    Inventor: Ralf Spitzl
  • Patent number: 10195604
    Abstract: The invention pertains to a zeolite catalyst, methods of making same, and its use in the catalytic cracking of naphtha for the production of lower molecular weight olefins and alkanes, while minimizing production less desirable products. A zeolite is modified by base leaching and by the addition of a metal cation, thereby lowering the Si/Al2 ratio and improving the stability of the formed catalyst.
    Type: Grant
    Filed: May 8, 2014
    Date of Patent: February 5, 2019
    Assignee: SAUDI BASIC INDUSTRIES CORPORATION
    Inventors: Nabil Al-Yassir, Mohammed Al-Hazmi, Mohammed Abdul Bari Siddiqui, Yaming Jin, Abdullah Aitani, Sulaiman Al-Khattaf
  • Patent number: 10196275
    Abstract: The present invention relates to a process for the production of a zeolitic material having a framework structure comprising YO2, wherein said process comprises: (1) preparing a mixture comprising one or more tetravalent elements Y in elemental form, one or more organic hydroxide salts, and one or more protic solvents; (2) reacting the mixture obtained in step (1) for converting at least part of the one or more tetravalent elements Y into an oxidic form thereof containing one or more Y—O single bonds and/or one or more Y?O double bonds; and (3) crystallizing a zeolitic material from the mixture obtained in step (2).
    Type: Grant
    Filed: October 1, 2013
    Date of Patent: February 5, 2019
    Assignee: BASF SE
    Inventors: Stefan Maurer, Roger Ruetz, Julia Petry, Ulrich Mueller
  • Patent number: 10144640
    Abstract: In one embodiment described herein, fuel may be converted into syngas by a method comprising feeding the fuel and composite metal oxides into a reduction reactor in a co-current flow pattern relative to one another, reducing the composite metal oxides with the fuel to form syngas and reduced composite metal oxides, transporting the reduced composite metal oxides to an oxidation reactor, regenerating the composite metal oxides by oxidizing the reduced composite metal oxides with an oxidizing reactant in the oxidation reactor, and recycling the regenerated composite metal oxides to the reduction reactor for subsequent reduction reactions to produce syngas. The composite metal oxides may be solid particles comprising a primary metal oxide and a secondary metal oxide.
    Type: Grant
    Filed: February 5, 2014
    Date of Patent: December 4, 2018
    Assignee: OHIO STATE INNOVATION FOUNDATION
    Inventors: Liang-Shih Fan, Siwei Luo, Liang Zeng
  • Patent number: 10118824
    Abstract: The invention relates to a process for purifying synthesis gas, comprising at least one stage for separating the crude synthesis gas to be treated into at least two effluents, namely a first part and a complementary part, in which the said first part is subjected to a carbon monoxide conversion stage with steam and the said complementary part is subjected to a COS and HCN catalytic hydrolysis stage, the two gas flows, namely the first part and complementary part, are then each treated separately in two stages intended to remove acid gases such as CO2 and H2S, by washing with aqueous solutions of specific amines, before a recombination stage of the two treated effluents.
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: November 6, 2018
    Assignees: AVRIL, AXENS, IFP ENERGIES NOUVELLES, BIONEXT, THYSSENKRUPP INDUSTRIAL SOLUTIONS AG, TOTAL RAFFINAGE CHIMIE, COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: David Chiche, Anne Claire Pierron, Norbert Ullrich
  • Patent number: 10118823
    Abstract: A method of operating an oxygen transport membrane based reforming system employing one or more packs of thermally coupled panels of reformer tubes and oxygen transport membrane (“OTM”) reactors close to thermo-neutral point is provided. The method produces syngas by converting a hydrocarbon-containing feed, such as natural gas in the reformer tubes of a pack by endothermic steam reforming reactions. The heat required for endothermic reforming reactions is provided by exothermic oxidizing reactions occurring inside the OTM reactors of the pack. At a thermo-neutral point the heat released by exothermic reactions matches the heat required to support endothermic reactions and heat losses in the pack. The method modulates the flow rate of hydrocarbon-containing feed and/or steam-to-carbon ratio of the combined feed to the pack to maintain the surface temperature of oxygen transport membrane reactors below a target maximum temperature.
    Type: Grant
    Filed: December 15, 2015
    Date of Patent: November 6, 2018
    Assignee: PRAXAIR TECHNOLOGY, INC.
    Inventors: Sean M. Kelly, Sadashiv M. Swami, John D. Peck
  • Patent number: 10118822
    Abstract: The present invention is directed to hydrogen production systems and methods of using same. The systems support a hydrogen production reaction that comprises aluminum and a catalyst or wool and van produce hydrogen on-demand. The hydrogen and the heat produced by the systems can be used for many applications, including to power vehicles, heat homes, or power electricity-producing power plants.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: November 6, 2018
    Assignee: CLEAN WAVE ENERGY CORP
    Inventor: Gavin Macrae
  • Patent number: 10112829
    Abstract: A method of producing hydrogen comprising receiving a sour gas comprising CO2, H2S, and ammonia from a sour water stripper; introducing the sour gas to an absorption system to produce an ammonia rich gas and a sulfide rich gas, wherein the ammonia rich gas comprises ammonia and CO2, and wherein the sulfide rich gas comprises H2S and CO2; compressing the ammonia rich gas in a compressing unit to a pressure of 400-600 psig to produce a compressed ammonia rich gas; introducing the compressed ammonia rich gas to an ammonia cracker unit comprising a catalyst to produce a cracked gas, wherein the ammonia cracker unit is characterized by a cracking temperature of 450-550° C., and wherein the cracked gas comprises hydrogen, nitrogen, and CO2; and introducing the cracked gas to a PSA unit to produce hydrogen and a PSA tail gas, wherein the PSA tail gas comprises nitrogen and CO2.
    Type: Grant
    Filed: January 19, 2016
    Date of Patent: October 30, 2018
    Assignee: Fluor Technologies Corporation
    Inventors: Ravi Ravikumar, Paul M. Mathias
  • Patent number: 10113008
    Abstract: This invention describes the equipment and a method to recover starch from a dilute starch stream produced by manufacturing facilities which process the starch-containing materials, such as potato and corn.
    Type: Grant
    Filed: September 21, 2016
    Date of Patent: October 30, 2018
    Inventors: Larry Ferro, Christopher Mann, Kevin Thompson
  • Patent number: 10112187
    Abstract: The present invention relates to a high-strength silicoaluminophasphate-34 (SAPO-34) microsphere catalyst, a method for preparing the same, and a method for preparing light olefins by using the same, and when described in more detail, the present invention relates to a method for preparing a SAPO-34 microsphere catalyst, including: spray drying a mixed slurry including a matrix, a binder, an additive, and the like to a SAPO-34 slurry prepared by a hydrothermal synthesizing method using various organic templates such as tetraethylammonium hydroxide (TEAOH), and the like alone or in mixtures to prepare microspheres, and firing the microspheres, and to a SAPO-34 microsphere catalyst for a circulating-fluidized bed reactor, prepared by the preparation method. The SAPO-34 microsphere catalyst of the present invention has excellent reaction activity while having high strength, and thus is appropriate for use in a circulating-fluidized bed reactor requiring high strength of the catalyst.
    Type: Grant
    Filed: October 4, 2010
    Date of Patent: October 30, 2018
    Assignee: KOREA RESEARCH INSTITUTE OF CHEMICAL TECHNOLOGY
    Inventors: Ho Jeong Chae, Soon Yong Jeong, Chul Ung Kim, Kwang Eun Jeong, Tae Wan Kim
  • Patent number: 10113005
    Abstract: The present invention relates to a method for producing dewatered microfibrillated cellulose (MFC) comprising i) providing an aqueous MFC slurry, ii) optionally dewatering said MFC slurry by mechanical means to provide a partly dewatered MFC slurry, and iii) subjecting the MFC slurry or the partly dewatered MFC slurry to one or more drying operations by means of one or more absorbing materials to produce dewatered MFC. The produced MFC can be redispersed in water without deteriorating the material properties of the MFC.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: October 30, 2018
    Assignee: Kemira Oyj
    Inventors: Martin Häggblom, Veli-Matti Vuorenpalo
  • Patent number: 10092896
    Abstract: A catalyst for selective catalytic reduction is described. Cerium (III) sulfate (cerous sulfate) is bound to a support. The catalyst also includes vanadium oxide and cerium oxide.
    Type: Grant
    Filed: June 30, 2014
    Date of Patent: October 9, 2018
    Assignees: Doosan Engine Co., Ltd., Korea Institute of Science and Technology
    Inventors: Jin Ho Cheon, Kyung Ju Lee, Sang Jin Kim, Heon Pil Ha
  • Patent number: 10093541
    Abstract: Process for the production of synthesis gas by catalytic steam reforming of a hydrocarbon containing feedstock in parallel in an autothermal steam reformer and heat exchange reformer, the heat for the steam reforming reactions in the heat exchange reformer being provided by indirect heat exchange with the combined effluent of the heat exchange reformer and a portion of the autothermal steam reformer.
    Type: Grant
    Filed: February 27, 2015
    Date of Patent: October 9, 2018
    Assignee: Haldor Topsoe A/S
    Inventors: Kim Aasberg-Petersen, Ib Dybkjær
  • Patent number: 10087381
    Abstract: The invention relates to a process for conversion of a feedstock comprising solid particles into at least a gaseous compound in a reactor comprising a vertically extending swirl chamber comprising a conical upper part with a decreasing diameter in upward direction, at least one tangential inlet at the bottom of the swirl chamber, and an outlet at the upper end of the swirl chamber, wherein the process is selected from pyrolysis, allothermal gasification or carbonization of a carbonaceous feedstock. The invention further relates to a process for conversion of a feedstock comprising solid particles into at least one or more gaseous compounds in such reactor.
    Type: Grant
    Filed: November 6, 2013
    Date of Patent: October 2, 2018
    Assignee: ALUCHA MANAGEMENT B.V.
    Inventors: Gerrit Brem, Eduard Augustinus Bramer
  • Patent number: 10087122
    Abstract: Provided are a supported catalyst, a preparation method therefor and use thereof, and a method for the preparation of isobutylene from halomethane. The catalyst is characterized in that it comprises a carrier and a metallic active component supported on the carrier, wherein the metallic active component comprises zinc oxide and zinc halide. On the basis of the total amount of the catalyst, by weight content, the content of zinc oxide is 0.5%-20%, the content of zinc halide is 10%-50%, and the content of the support is 40%-88%. Compared with the prior art, the catalyst of the present invention can convert halomethane into isobutylene with a high selectivity. With the reaction for preparing of isobutylene by converting bromomethane according to the method of the present invention, the conversion of bromomethane is not less than 90% and the selectivity of isobutylene is not less than 80%.
    Type: Grant
    Filed: October 28, 2014
    Date of Patent: October 2, 2018
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, FUSHUN RESEARCH INSTITUTE OF PETROLEUM AND PETROCHEMICALS, SINOPEC CORP.
    Inventors: Xiangchen Fang, Shudong Zhang, Xinwei Zhang, Xiwen Zhang, Xiaodan Sun, Jie Li, Xiangqian Ni
  • Patent number: 10087074
    Abstract: A process for producing ammonia synthesis gas from a hydrocarbon-containing feedstock, with steps of primary reforming, secondary reforming with an oxidant stream, and further treatment of the synthesis gas including shift, removal of carbon dioxide and methanation, wherein the synthesis gas delivered by secondary reforming is subject to a medium-temperature shift (MTS) at a temperature between 200 and 350° C., and primary reforming is operated with a steam-to-carbon ratio lower than 2. A corresponding method for revamping an ammonia plant is disclosed, where an existing HTS reactor is modified to operate at medium temperature, or replaced with a new MTS reactor, and the steam-to-carbon ratio in the primary reformer is lowered to a value in the range 1-5?2, thus reducing inert steam in the flow rate trough the equipments of the front-end.
    Type: Grant
    Filed: May 12, 2011
    Date of Patent: October 2, 2018
    Assignee: Casale SA
    Inventors: Ermanno Filippi, Francesco Baratto, Sergio Panza, Raffaele Ostuni
  • Patent number: 10072215
    Abstract: Disclosed is a hybrid catalyst system for the production of hydrogen/carbon monoxide syngas. The hybrid catalyst system includes a dye, a rhenium (Re) catalyst, and a cobalt (Co) catalyst grafted on a semiconductor metal oxide. The hybrid catalyst system can produce syngas without the aid of external energy and enables control over the ratio of hydrogen/carbon monoxide formed. Therefore, the hybrid catalyst system can find application in various industrial fields, including chemical fuel production.
    Type: Grant
    Filed: October 11, 2017
    Date of Patent: September 11, 2018
    Assignee: KOREA UNIVERSITY RESEARCH AND BUSINESS FOUNDATION, SEJONG CAMPUS
    Inventors: Ho-Jin Son, Sang Ook Kang, Jong-Su Lee
  • Patent number: 10046967
    Abstract: Disclosed is a method for the production of hydrogen from a H2S-containing gas stream also containing ammonia, comprising subjecting both gas stream to catalytic oxidative cracking of both the H2S and the NH3, so as to form H2, S2 and N2. In this method, preferably, an additional amount of oxygen is added as compared to the amount used for H2S catalytic oxidative cracking. Also, preferably, the contact time of the gas stream with the catalyst is increased. The catalyst preferably is provided as a single bed, and then preferably comprises iron and molybdenum supported by a carrier comprising aluminum. The preferred carrier is alumina. The iron and molybdenum preferably are in the form of sulfides.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: August 14, 2018
    Assignee: STAMICARBON B.V. ACTING UNDER THE NAME OF MT INNOVATION CENTER
    Inventors: Michele Colozzi, Lucia Barbato, Fabio Angelini, Emma Palo, Vincenzo Palma, Vincenzo Vaiano
  • Patent number: 10046314
    Abstract: The present invention relates to a catalyst for ammonia synthesis and ammonia decomposition. The catalyst includes a nitrogen-containing compound of a main group element and a related support and an additive. The present invention is a novel catalytic material, which exhibits good catalytic activity in ammonia synthesis and ammonia decomposition reactions.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: August 14, 2018
    Assignee: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Ping Chen, Jianping Guo, Peikun Wang, Zhitao Xiong, Daqiang Hu
  • Patent number: 10035141
    Abstract: Provided is AEI zeolite having a uniform acid strength of an appropriate degree. AEI zeolite comprising phosphorus, preferably AEI zeolite comprising phosphorus in the pores, and a method for producing AEI zeolite comprising a crystallization step of crystallizing a raw material mixture containing a tetraethylphosphonium cation.
    Type: Grant
    Filed: July 9, 2014
    Date of Patent: July 31, 2018
    Assignees: TOSOH CORPORATION, HIROSHIMA UNIVERSITY
    Inventors: Tsuneji Sano, Masahiro Sadakane, Yasuyuki Takamitsu