Patents Examined by Elizabeth Burkhart
  • Patent number: 11236417
    Abstract: A method for producing a waveguide including a germanium-based core and a cladding is provided, the method including a step of “low temperature” depositing of a shell after forming the core by engraving, such that the deposition temperature is less than 780° C., followed by a step of “high temperature” depositing of a thick encapsulation layer. The shell and the encapsulation layer at least partially form the cladding of the waveguide. Optionally, a step of annealing under hydrogen at a “low temperature”, less than 750° C., precedes the deposition of the shell. These “low temperature” annealing and depositing steps advantageously make it possible to avoid a post-engraving alteration of the free surfaces of the core during the forming of the cladding which is less germanium-rich.
    Type: Grant
    Filed: December 7, 2018
    Date of Patent: February 1, 2022
    Assignee: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Jean-Michel Hartmann, Mickael Brun, Jean-Marc Fedeli, Maryse Fournier
  • Patent number: 11236426
    Abstract: Methods of forming plasmonic diamond films are provided. In an embodiment, such a method comprises forming a first layer of diamond on a substrate; depositing a layer of a metal on a surface of the first layer of diamond to form an as-deposited layer of metal; exposing the as-deposited layer of metal to a plasma treatment to convert the as-deposited layer of metal to a plurality of discrete regions of the metal on the surface of the first layer of diamond; and forming a second layer of diamond on the plurality of discrete regions of metal to form the plasmonic diamond film comprising a plurality of plasmonic nanoparticles.
    Type: Grant
    Filed: August 17, 2018
    Date of Patent: February 1, 2022
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Robert John Hamers, Shuo Li
  • Patent number: 11203170
    Abstract: A method of manufacturing a 3-dimensional variable refractive-index optical-element with surface figure, the method comprising: depositing a plurality of nanocomposite-inks comprising an organic-matrix with a nanoparticle filler dispersed within, and at least partially curing a portion of the nanocomposite-ink to form a nanocomposite slab that is at least semi-solid; transferring the nanocomposite slab to a press, the press having a die mold with at least a first surface figure; and actuating the press to compress the nanocomposite slab and impart the die mold's first surface figure onto the nanocomposite slab to form a nanocomposite optical-element.
    Type: Grant
    Filed: May 10, 2016
    Date of Patent: December 21, 2021
    Assignee: VADIENT OPTICS, LLC
    Inventor: George Williams
  • Patent number: 11198936
    Abstract: A multi-component coating composition for a surface of a chamber component comprising at least one first film layer of a yttrium oxide coated onto the surface of the chamber component using an atomic layer deposition process and at least one second film layer of zirconium oxide coated onto the surface of the chamber component using an atomic layer deposition process, wherein the multi-component coating comprises YZrxOy.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: December 14, 2021
    Assignee: Applied Materials, Inc.
    Inventors: David Fenwick, Jennifer Y. Sun
  • Patent number: 11194077
    Abstract: The present invention provides a hydrophilic coating method for contact lens surface, firstly performing a hydration procedure S1 to form a hydrated polymer from a non-hydrated polymer, then sequentially contacting the hydrated polymer with a first solution and a second solution containing a high molecular compound at a specific temperature between 50° C. and 70° C. to complete a first hydration process S2 and a second hydration process S3. A contact lens 1 obtained according to the above procedures has a contact angle ranging from about 30° to 65°, and proteins and lipids are not easily deposited on a surface of the contact lens 1, thereby providing the user with good comfort when wearing.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: December 7, 2021
    Assignee: UNICON OPTICAL CO., LTD.
    Inventors: Ji-Yu Lin, Hsu-Kuei Hsiao, Ting-Hsuan Lin
  • Patent number: 11185928
    Abstract: A surface-coated cutting tool includes a substrate and a coating film that coats the substrate, wherein the coating film includes a hard coating layer constituted of a domain region and a matrix region, the domain region is a region having a plurality of portions divided and distributed in the matrix region, the domain region has a structure in which a first layer composed of a first Alx1Ti(1-x1) compound and a second layer composed of a second Alx2Ti(1-x2) compound are layered on each other, the matrix region has a structure in which a third layer composed of a third Alx3Ti(1-x3) compound and a fourth layer composed of a fourth Alx4Ti(1-x4) compound are layered on each other, the first AlTi compound and the third AlTi compound have a hexagonal crystal structure, the second AlTi compound and the fourth AlTi compound have a cubic crystal structure.
    Type: Grant
    Filed: December 27, 2018
    Date of Patent: November 30, 2021
    Assignee: Sumitomo Electric Hardmetal Corp.
    Inventors: Anongsack Paseuth, Yasuki Kido, Susumu Okuno, Shinya Imamura
  • Patent number: 11180410
    Abstract: This disclosure is directed to an improved process for making glass articles having optical coating and easy-to clean coating thereon, an apparatus for the process and a product made using the process. In particular, the disclosure is directed to a process in which the application of the optical coating and the easy-to-clean coating can be sequentially applied using a single apparatus. Using the combination of the coating apparatus and the substrate carrier described herein results in a glass article having both optical and easy-to-clean coating that have improved scratch resistance durability and optical performance, and in addition the resulting articles are “shadow free.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: November 23, 2021
    Assignee: Corning Incorporated
    Inventors: Christopher Morton Lee, Xiao-feng Lu, Michael Xu Ouyang, Junhong Zhang
  • Patent number: 11174400
    Abstract: A method of manufacturing a nanocomposite GRIN optical-element. The method comprises providing a volumetric gradient refractive profile and providing a plurality of nanocomposite-inks to form the GRIN optical-element. Each of the plurality of nanocomposite-inks have nanoparticles dispersed in an organic-matrix. The plurality of nanocomposite-inks comprising of a nanoparticle diffusion inhibiting nanocomposite-ink wherein nanoparticle diffusion is inhibited with respect to another of the plurality of nanocomposite-inks. The diffusion inhibiting nanocomposite-ink having a different dielectric property from at least one of the other plurality of nanocomposite-inks. The plurality of nanocomposite-inks also comprising a nanoparticle diffusion permitting nanocomposite-ink wherein nanoparticle diffusion is permitted with respect to at least another of the plurality of nanocomposite-inks.
    Type: Grant
    Filed: September 23, 2015
    Date of Patent: November 16, 2021
    Assignee: VADIENT OPTICS, LLC
    Inventors: George Williams, John Paul Harmon, Charles G. Dupuy, Ngoc Thanh Nguyen
  • Patent number: 11155923
    Abstract: There is provided a gas supply device for vaporizing a raw material inside a raw material container and supplying a raw material gas into a processing vessel together with a carrier gas, including: a mass flow controller connected to an upstream side of the raw material container and configured to control a flow rate of the carrier gas; a flow meter connected to a downstream side of the raw material container; and a control part configured to perform a control so as not to supply the raw material gas into the processing vessel until a detection value of the flow meter with respect to the carrier gas controlled to have a constant flow rate by the mass flow controller is stabilized after replacing the raw material container.
    Type: Grant
    Filed: February 22, 2018
    Date of Patent: October 26, 2021
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Katsumasa Yamaguchi, Kensaku Narushima, Hironori Yagi
  • Patent number: 11155917
    Abstract: Methods for depositing rhenium-containing thin films are provided. In some embodiments metallic rhenium-containing thin films are deposited. In some embodiments rhenium sulfide thin films are deposited. In some embodiments films comprising rhenium nitride are deposited. The rhenium-containing thin films may be deposited by cyclic vapor deposition processes, for example using rhenium halide precursors. The rhenium-containing thin films may find use, for example, as 2D materials.
    Type: Grant
    Filed: March 31, 2020
    Date of Patent: October 26, 2021
    Assignee: ASM IP HOLDING B.V.
    Inventors: Jani Hamalainen, Mikko Ritala, Markku Leskela
  • Patent number: 11156883
    Abstract: A color filter includes: a substrate that transmits light; and a colored layer being formed by an ink jet ink, the colored layer being arranged on a lattice point which is a virtual point in a plurality of virtual lattice patterns arranged on the substrate with a first pitch in a first direction and a second pitch in a second direction, the colored layer being separated in the first direction and the second direction.
    Type: Grant
    Filed: January 29, 2018
    Date of Patent: October 26, 2021
    Assignee: TOPPAN PRINTING CO., LTD.
    Inventor: Kodai Konno
  • Patent number: 11149340
    Abstract: In a method for designing and fabricating a micro-lens array, a design is finalized by varying certain features of a shadow mask, varying a distance between a source of lens-forming material and the shadow mask, and varying other parameters until the features and distances result in the formation of a micro-lens having desired shape, etc. A shadow mask in accordance with the design is then fabricated and is appropriately positioned with respect to a micro-display and a source of lens-forming material. A plume of lens-forming material is then generated under reduced pressure and which propagates toward the shadow mask, directly patterning the micro-lenses on sub-pixels of the micro-display.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: October 19, 2021
    Assignee: eMagin Corporation
    Inventors: Ilyas I. Khayrullin, Amalkumar P. Ghosh, Ihor Wacyk, Evan Donoghue, Tariq Ali, Qi Wang, Kerry Tice
  • Patent number: 11136670
    Abstract: A gas spraying apparatus according to the embodiment of the present invention includes a spray part disposed and aligned on one side outside a substrate in the width direction of the substrate, and having a plurality of nozzles for spraying gas toward the substrate, and a spray control unit for automatically controlling whether or not each of a plurality of nozzles sprays gas such that a gas density distribution type in the width direction of the substrate becomes a targeted gas density distribution type by the gas sprayed through the plurality of nozzles. Therefore, according to the embodiment of the present invention, it is easy to carry out the process with a plurality of types of process types or a plurality of types of gas density distribution types, and a time for adjusting the open or close operation of the plurality of nozzles can be shortened.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: October 5, 2021
    Inventors: Sang Hyun Ji, Chang Kyo Kim
  • Patent number: 11131877
    Abstract: A fabrication method of a dye polarizer and a display panel are provided. The fabrication method includes: dissolving a dye mixture and a reactive monomer in a solvent to form a polarization film solution, in which the dye mixture is formed by mixing multiple dichroic dyes and the dye mixture functions to absorb visible light of all wave band; coating the polarization film solution one a base, followed by alignment, to allow the reactive monomer to cure on the base; and repeating the step of forming the dye polarization film for n times to form a dye polarizer including n+1 stacked layers of the dye polarization, where n is a nature number greater than or equal to 2. The display panel includes the dye polarizer that is formed with the fabrication method described above.
    Type: Grant
    Filed: January 31, 2018
    Date of Patent: September 28, 2021
    Assignee: TCL CHINA STAR OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventors: Chunqiu Yan, Lixuan Chen, Zhenxia Chen
  • Patent number: 11119257
    Abstract: Methods of fabricating optical lenses and mirrors, systems and composite structures based on diffractive waveplates, and fields of application of said lenses and mirrors that include imaging systems, astronomy, displays, polarizers, optical communication and other areas of laser and photonics technology. Diffractive lenses and mirrors of shorter focal length and larger size, with more closely spaced grating lines, and with more exacting tolerances on the optical characteristics, can be fabricated than could be fabricated by previous methods.
    Type: Grant
    Filed: December 7, 2018
    Date of Patent: September 14, 2021
    Assignees: Beam Engineering for Advanced Measurements Co, U.S. Government as Represented by the Secretary of the Army
    Inventors: Nelson V. Tabirian, Svetlana Serak, David E. Roberts, Diane Steeves, Brian Kimball
  • Patent number: 11104993
    Abstract: The invention is directed to a configurable vaporizer or ampoule assembly that uses a configurable vessel body, assembled from one or more support tray modules with their own individual heating assemblies or heater members, bounded by a base member and a lid member to form the whole ampoule. This eliminates the need for the prior art ampoule body that normally holds the support trays and was used to heat each of the support trays from the exterior surface using heating jackets or the like.
    Type: Grant
    Filed: July 25, 2018
    Date of Patent: August 31, 2021
    Assignee: ENTEGRIS, INC.
    Inventors: Jordan Hodges, Jacob Thomas
  • Patent number: 11104058
    Abstract: An additive manufacturing system configured to a 3D print using a metal wire material includes a drive mechanism configured to feed the metal feedstock into an inlet tube and a liquefier. The liquefier has a chamber configured to accept the metal feedstock from the inlet tube. The metal feed stock is heated in the chamber such that a melt pool is formed in the chamber. The liquefier has an extrusion tube in fluid communication with the chamber, the extrusion tube having a length (L) and a diameter (D) wherein the ratio of length to diameter (L/D) ranges from about 4:1 to about 20:1. The system has a platen with a surface configured to accept melted material from the liquefier, wherein the platen and the liquefier move in at least three dimensions relative to each other.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: August 31, 2021
    Assignee: Stratasys, Inc.
    Inventors: Robert L. Zinniel, S. Scott Crump, Dominic F. Mannella
  • Patent number: 11098405
    Abstract: A shower head includes a face plate having an outer peripheral portion and a plurality of gas injection holes disposed inside the outer peripheral portion, a movable portion facing the face plate and having a gas introduction passage, and a seal interposed between the outer peripheral portion of the face plate and the movable portion. The movable portion is arranged to move, in the first direction, between a first position in which the movable portion is coupled to the face plate by interposing the seal between the movable portion and the face plate, and the gas introduction passage communicates with the inside of the chamber via the gas injection holes, and a second position in which the movable portion is separated from the face plate, and the gas introduction passage communicates with the inside of the chamber via a gap between the movable portion and the face plate.
    Type: Grant
    Filed: February 22, 2018
    Date of Patent: August 24, 2021
    Assignee: TOSHIBA MEMORY CORPORATION
    Inventors: Hideaki Masuda, Nobuhide Yamada, Rikyu Ikariyama
  • Patent number: 11092898
    Abstract: The present disclosure provides an interference filter, a lithography system incorporating an interference filter, and a method of fabricating an interference filter. The interference filter includes a transparent substrate having a front surface and a back surface, a plurality of alternating material layers formed over the front surface of the transparent substrate that form a bandpass filter, and an anti-reflective structure formed over the back surface of the transparent substrate. The alternating material layers alternate between a relatively high refractive index material and a relatively low refractive index material.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: August 17, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Wolf Hung, Chung-Nan Chen, Hong-Hsing Chou, Jaw-Lih Shih, Yeh-Chieh Wang
  • Patent number: 11084236
    Abstract: A method for preparing an optical element which colors in a non-uniform linear pattern is provided.
    Type: Grant
    Filed: March 10, 2015
    Date of Patent: August 10, 2021
    Assignee: Transitions Optical, Inc.
    Inventors: Joseph D. Turpen, Jennine M. Frease, William D. Carpenter, Kevin J. Stewart