Patents Examined by Elizabeth D. Wood
  • Patent number: 10906031
    Abstract: The present disclosure describes, inter alia, binary catalyst compositions including a (metal) zeolite having a crystal lattice that incorporates a metal oxide, wherein the metal oxide is covalently bound to elements within the crystal lattice. The metal oxide forms an integral part of the (metal) zeolite crystal lattice, forming covalent bonds with at least the Si or Al atoms within the crystal lattice of the (metal) zeolite, and is dispersed throughout the (metal) zeolite crystal lattice. The metal oxide can substitute atoms within the crystal lattice of the (metal) zeolite.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: February 2, 2021
    Assignee: PACCAR INC
    Inventor: Randal A. Goffe
  • Patent number: 10906030
    Abstract: The present invention relates to a process for preparing a difunctional catalyst using a zeolite IZM-2, a hydrogenating function and a matrix. The preparation process according to the invention simultaneously allows preferential localization of said hydrogenating function on the surface and/or in the microporosity of zeolite IZM-2 and homogeneous distribution of the hydrogenating function in the catalyst and preferably on zeolite IZM-2 by means of using an impregnation solution comprising specific noble metal precursors combined with the presence of ammonium salts, with a quite precise ratio of ammonium salt to noble metal.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: February 2, 2021
    Assignee: IFP Energies nouvelles
    Inventor: Christophe Bouchy
  • Patent number: 10898885
    Abstract: According to one or more embodiments described, a zeolite supported catalyst may be synthesized by a process that includes combining a colloidal mixture with a metal oxide support material to form a support precursor material, processing the support precursor material to form a support material, and impregnating the support material with one or more metals to form the zeolite supported catalyst. The colloidal mixture may include nano-sized zeolite crystals, and the nano-sized zeolite crystals may have an average size of less than 100 nm.
    Type: Grant
    Filed: February 13, 2020
    Date of Patent: January 26, 2021
    Assignee: Saudi Arabian Oil Company
    Inventors: Lianhui Ding, Essam Al-Sayed, Manal Al-Eid, Hanaa Habboubi
  • Patent number: 10898886
    Abstract: A hydrocarbon and NOx catalyst trap includes a three-way catalyst, and a zeolite layer adjacent to the three-way catalyst and including alumina and silica arranged to form a repeating skeletal frame that defines cavities including active metal active sites for hydrocarbon and NOx trapping such that individual atoms of the active metal are bound to the frame within the cavities via oxygen atoms.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: January 26, 2021
    Assignee: Ford Global Technologies, LLC
    Inventors: Lifeng Xu, Giovanni Cavataio, Justin Anthony Ura, Jeffrey Scott Hepburn, Gang Guo
  • Patent number: 10899682
    Abstract: Process for preparing a catalyst composition containing a modified crystalline aluminosilicate and a binder, wherein the catalyst composition comprises from 5 to 95% by weight of crystalline aluminosilicate as based on the total weight of the catalyst composition, the process being remarkable in that it comprises a step of steaming said crystalline aluminosilicate: at a temperature ranging from 100° C. to 380° C.
    Type: Grant
    Filed: September 6, 2017
    Date of Patent: January 26, 2021
    Assignees: TOTAL REFINING & TECHNOLOGY FELUY, IFP ENERGIES NOUVELLES
    Inventors: Nikolai Nesterenko, Colin Dupont, Vincent Coupard, Sylvie Maury, Thibault Heinz
  • Patent number: 10894248
    Abstract: The present invention provides a catalyst composition comprising rare earth exchanged USY zeolite (REUSY); pentasil zeolite; phosphorous compound; clay, silica, alumina, and spinel to enhance the catalytic activity and selectivity for light olefins in FCC operation conditions. The present invention also provides a process for the preparation of Light olefin enhancing catalyst composition with high propylene yield and coke selectivity.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: January 19, 2021
    Assignee: INDIAN OIL CORPORATION LIMITED
    Inventors: Mohan Prabhu Kuvettu, Arumugam Velayutham Karthikeyani, Velusamy Chidambaram, Kumaresan Loganathan, Alex Cheru Pulikottil, Sanjiv Kumar Mazumdar, Sankara Sri Venkata Ramakumar
  • Patent number: 10894752
    Abstract: The invention relates to hydrocarbon feedstock processing technology, in particular, to catalysts and technology for aromatization of C3-C4 hydrocarbon gases, light low-octane hydrocarbon fractions and oxygen-containing compounds (C1-C3 aliphatic alcohols), as well as mixtures thereof resulting in producing an aromatic hydrocarbon concentrate (AHCC). The catalyst comprises a mechanical mixture of 2 zeolites, one of which is characterized by the silica/alumina ratio SiO2/Al2O3=20, pre-treated with an aqueous alkali solution and modified with oxides of rare-earth elements used in the amount from 0.5 to 2.0 wt % based on the weight of the first zeolite. The second zeolite is characterized by the silica/alumina ratio SiO2/Al2O3=82, comprises sodium oxide residual amounts of 0.04 wt % based on the weight of the second zeolite, and is modified with magnesium oxide in the amount from 0.5 to 5.0 wt % based on the weight of the second zeolite. Furthermore, the zeolites are used in the weight ratio from 1.7:1 to 2.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: January 19, 2021
    Assignee: NGT Global AG
    Inventors: Iosif Izrailevich Lishchiner, Olga Vasilyevna Malova, Andrey Leonidovich Tarasov
  • Patent number: 10894246
    Abstract: Catalyst compositions comprising an inorganic porous material with pore diameters of at least 2 nm and of crystals of molecular sieve, characterized in that the crystals of molecular sieve have an average diameter, measured by scanning electron microscopy, not bigger than 50 nm, and in that the catalyst composition presents a concentration of acid sites ranges from 50 to 1200 ?mol/g measured by TPD NH3 adsorption; and the XRD pattern of said catalyst composition is the same as the X ray diffraction pattern of said inorganic porous material.
    Type: Grant
    Filed: February 6, 2019
    Date of Patent: January 19, 2021
    Assignee: TOTAL RESEARCH & TECHNOLOGY FELUY
    Inventors: Kok-Giap Haw, Jean-Michel Goupil, Jean-Pierre Gilson, Valentin Valtchev, Nikolai Nesterenko, Delphine Minoux, Jean-Pierre Dath
  • Patent number: 10889503
    Abstract: The present invention relates to zeolite containing Cu2+ (?) and Cu2+ (?) having different NO adsorption capacities loaded at a specific ratio, wherein the zeolite is chabazite (CHA)-type zeolite, particularly chabazite (CHA)-type zeolite loaded with divalent copper ions in which the NO adsorption area ratio of Cu2+ (?)/Cu2+ (?) after exposure to NO (nitrogen oxide) for 180 sec is 80% or more. In addition, the present invention relates to a method of preparing zeolite that is ion-exchanged in a slurry state and to a catalyst including the specified chabazite (CHA)-type zeolite.
    Type: Grant
    Filed: November 29, 2017
    Date of Patent: January 12, 2021
    Assignee: HEESUNG CATALYSTS CORPORATION
    Inventors: Mi-young Kim, Jin-won Kim, Yong Sul Kim, Eun-seok Kim, Seung Chul Na, Hyun-sik Han
  • Patent number: 10888849
    Abstract: A bifunctional catalyst for conversion of oxygenates, said bifunctional catalyst comprising zeolite, alumina binder, Zn and P, wherein P is evenly distributed across the catalyst.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: January 12, 2021
    Assignee: Haldor Topsoe A/S
    Inventors: Finn Joensen, Uffe Vie Mentzel
  • Patent number: 10888848
    Abstract: A catalytic cracking catalyst has a rare earth modified Y-type molecular sieve, an additive-containing alumina binder, and a clay. The rare earth modified Y-type molecular sieve has a rare earth oxide content of about 4-12 wt %, a phosphorus content of about 0-10 wt %, a sodium oxide content of no more than about 1.0 wt %, a total pore volume of about 0.36-0.48 mL/g, a percentage of the pore volume of secondary pores having a pore size of 2-100 nm to the total pore volume of about 20-40%, a lattice constant of about 2.440-2.455 nm, a percentage of non-framework aluminum content to the total aluminum content of no more than about 10%, a lattice collapse temperature of not lower than about 1060° C., and a ratio of B acid to L acid in the total acid content of the modified Y-type molecular sieve of no less than about 3.50.
    Type: Grant
    Filed: February 12, 2018
    Date of Patent: January 12, 2021
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Lingping Zhou, Weilin Zhang, Mingde Xu, Zhenyu Chen, Huiping Tian, Yuxia Zhu
  • Patent number: 10888850
    Abstract: Methods, catalysts, and corresponding catalyst precursors are provided for performing dewaxing of diesel or distillate boiling range fractions. The dewaxing methods, catalysts, and/or catalyst precursors can allow for production of diesel boiling range fuels with improved cold flow properties at desirable yields. The catalysts and/or catalyst precursors can correspond to supported metal catalysts and/or catalyst precursors that include at least one noble metal, such as Pt, at least one Group 8-10 base metal, preferably a non-noble Group 8-10 base metal, such as Ni and/or Co along with a Group 6 metal, such as Mo and/or W as supported metals along. The support can include a zeolitic framework structure. The catalyst precursors can be formed, for example, by impregnating a support including a zeolitic framework structure with impregnation solution(s) that also includes a dispersion agent.
    Type: Grant
    Filed: April 26, 2018
    Date of Patent: January 12, 2021
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Chuansheng Bai, Paul Podsiadlo, Stephen J. McCarthy
  • Patent number: 10882033
    Abstract: A slurry composition for a catalyst and a method for producing the same, a catalyst and a method for producing the same using the slurry composition for a catalyst. The method omits many heretofore required treatment steps and reduces catalyst production cost. The method comprising the steps of providing a slurry composition for a catalyst, comprising at least an aluminosilicate, Cu, and water, and having a solid concentration of 0.1% by mass to 90% by mass, wherein a component for a catalyst has composition represented by Al2O3·xSiO2·yT2O·zCuO (wherein T is a quaternary ammonium cation, and x, y and z are numbers that satisfy 10?x?40, 0.1?y<2.0, and 0.1?z<2.0, respectively) in terms of molar ratio based on an oxide; coating at least one side of a support with this slurry composition; and heat-treating at 350° C. or higher.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: January 5, 2021
    Assignee: N.E. CHEMCAT CORPORATION
    Inventors: Yukio Takagi, Kiyohiko Saito, Yasuyuki Banno, Makoto Nagata
  • Patent number: 10870106
    Abstract: A method of making a multifunctional catalyst for upgrading pyrolysis oil includes contacting a zeolite support with a solution including at least a first metal catalyst precursor and a second metal catalyst precursor, the first metal catalyst precursor, the second metal catalyst precursor, or both, including a heteropolyacid. Contacting the zeolite support with the solution deposits or adsorbs the first metal catalyst precursor and the second catalyst precursor onto outer surfaces and pore surfaces of the zeolite support to produce a multifunctional catalyst precursor. The method further includes removing excess solution from the multifunctional catalyst precursor and calcining the multifunctional catalyst precursor to produce the multifunctional catalyst comprising at least a first metal catalyst and a second metal catalyst deposited on the outer surfaces and pore surfaces of the zeolite support.
    Type: Grant
    Filed: March 3, 2020
    Date of Patent: December 22, 2020
    Assignee: Saudi Arabian Oil Company
    Inventor: Miao Sun
  • Patent number: 10864504
    Abstract: Process for preparing a hydrocracking catalyst carrier which process comprises subjecting a carrier comprising an amorphous binder and zeolite Y having a silica to alumina molar ratio of at least 10 to calcination at a temperature of from 700 to 900° C., hydrocracking catalyst carrier comprising amorphous binder and zeolite Y having a silica to alumina molar ratio of at least 10, the infrared spectrum of which catalyst has a peak at 3690 cm?1, substantially reduced peaks at 3630 cm?1 and 3565 cm?1 and no peak at 3600 cm?1, hydrocracking catalyst carrier comprising an amorphous binder and zeolite Y having a silica to alumina molar ratio of at least 10, which catalyst has an acidity as measured by exchange with perdeuterated benzene of at most 20 micromole/gram, hydrocracking catalyst derived from such carrier and hydrocracking process with the help of such catalyst.
    Type: Grant
    Filed: February 20, 2020
    Date of Patent: December 15, 2020
    Assignee: Shell Oil Company
    Inventors: László Domokos, Cornelis Ouwehand
  • Patent number: 10864506
    Abstract: A hydrocarbon conversion catalyst composition which comprises ZSM-48 and/or EU-2 zeolite particles and refractory oxide binder essentially free of alumina in which the average aluminium concentration of the ZSM-48 and/or EU-2 zeolite particles is at least 1.3 times the aluminium concentration at the surface of the particles, processes for preparing such catalyst compositions and processes for converting hydrocarbon feedstock with the help of such compositions.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: December 15, 2020
    Assignee: Shell Oil Company
    Inventors: László Domokos, Laurent Georges Huve, Hermanus Jongkind, Aan Hendrik Klazinga, Marcello Stefano Rigutto
  • Patent number: 10864505
    Abstract: The invention relates to a process for preparing a hydrocracking catalyst, comprising (i) contacting a shaped body comprising a zeolite and a binder with an aqueous solution of a hydrogenation metal compound which is a complex or a salt of a hydrogenation metal to deposit the hydrogenation metal onto the shaped body, wherein the aqueous solution comprises an ammonium salt and (ii) calcining the shaped body obtained by step (i).
    Type: Grant
    Filed: December 5, 2016
    Date of Patent: December 15, 2020
    Assignee: SABIC GLOBAL TECHNOLOGIES B.V.
    Inventors: Alla Khanmamedova, Ashim Kumar Ghosh, Scott Stevenson, David Sullivan, Pooja Bajaj
  • Patent number: 10850263
    Abstract: A catalyst includes LTA zeolite including copper ions, wherein a Si/Al ratio of the LTA zeolite is 2 to 50. The catalyst is coated on a honeycomb carrier or a filter. The catalyst removes NOx from a reaction gas at 100° C. or above. The catalyst has an NOx conversion rate of 80% at 450° C. or above.
    Type: Grant
    Filed: November 19, 2019
    Date of Patent: December 1, 2020
    Assignees: HYUNDAI MOTOR COMPANY, KIA MOTORS CORPORATION, POSTECH ACADEMY-INDUSTRY FOUNDATION
    Inventors: Suk Bong Hong, Donghui Jo, Taekyung Ryu, Gi Tae Park, In-Sik Nam, Pyung Soon Kim, Chang Hwan Kim
  • Patent number: 10850262
    Abstract: A hydrocracking catalyst for petroleum hydrocracking is provided, the hydrocracking catalyst provided in a form of at least one fiber, and the at least one fiber comprising at least one zeolite and at least one metal oxide. Methods are also provided to form the hydrocracking catalyst in the form of at least one fiber, particularly electrospinning.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: December 1, 2020
    Assignee: KHALIFA UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Raed Hashaikeh, Shaheen Anis, Gnana P. Singaravel
  • Patent number: 10843177
    Abstract: The present invention relates to a catalyst composition and a process for preparing thereof, wherein the catalyst composition is specifically active for hydro-conversion of LCO involving mainly the partial ring opening of multi-ring aromatics leading to the production of petrochemical feedstock. The catalyst composition comprises of a carrier comprising ultra-stable Y zeolite and binder alumina, group VIB and VIIIB metal species, and organic additives. The carrier is impregnated with metal solution to form active sites of WS2 slabs of dimensions in the range of 35-45 ?.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: November 24, 2020
    Assignee: Indian Oil Corporation Limited
    Inventors: Ramasubramanian Kanthasamy, Kochappilly Ouseph Xavier, Alex Cheru Pulikottil, Madhusudan Sau, Sanjiv Kumar Mazumdar, Sankara Sri Venkata Ramakumar