Patents Examined by Ermias Woldegeorgis
  • Patent number: 9780188
    Abstract: A vertical power component includes a silicon substrate of a first conductivity type with a well of the second conductivity type on a lower surface of the substrate. The first well is bordered at a component periphery with an insulating porous silicon ring. An upper surface of the porous silicon ring is only in contact with the substrate of the first conductivity type. The insulating porous silicon ring penetrates into the substrate down to a depth greater than a thickness of the well. The porous silicon ring is produced by forming a doped well in a first surface of a doped substrate, placing that first surface of the substrate into an electrolytic bath, and circulating a current between an opposite second surface of the substrate and the electrolytic bath.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: October 3, 2017
    Assignees: STMicroelectronics (Tours) SAS, Universite Francois Rabelais
    Inventors: Samuel Menard, Gael Gautier
  • Patent number: 9773803
    Abstract: According to an embodiment, a non-volatile memory device includes a first conductive layer, electrodes, an interconnection layer and at least one semiconductor layer. The electrodes are arranged between the first conductive layer and the interconnection layer in a first direction perpendicular to the first conductive layer. The interconnection layer includes a first interconnection and a second interconnection. The semiconductor layer extends through the electrodes in the first direction, and is electrically connected to the first conductive layer and the first interconnection. The device further includes a memory film between each of the electrodes and the semiconductor layer, and a conductive body extending in the first direction. The conductive body electrically connects the first conductive layer and the second interconnection, and includes a first portion and a second portion connected to the second interconnection. The second portion has a width wider than the first portion.
    Type: Grant
    Filed: March 10, 2015
    Date of Patent: September 26, 2017
    Assignee: TOSHIBA MEMORY CORPORATION
    Inventors: Masaki Tsuji, Yoshiaki Fukuzumi
  • Patent number: 9764943
    Abstract: A MEMS structure includes a planar substrate, a support body coupled to the planar substrate, a fixed electrode coupled to the planar substrate and a moveable portion. The movable portion is spaced from and faces the fixed electrode. The movable electrode includes a movable weight and an intermediate frame surrounding an outer edge of the movable weight. A plurality of elastic supports connect the movable weight to the intermediate frame. The elastic supports are elastically deformable in a first direction extending parallel to the plane of the substrate such that the movable weight can move in the first direction. At least one torsion bar pivotally connects one end of the intermediate frame to the support body so as to allow the intermediate frame, and with it the movable weight, to pivot around an axis which extends parallel to the plane of the substrate and perpendicular to the first direction.
    Type: Grant
    Filed: November 28, 2016
    Date of Patent: September 19, 2017
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Tsuyoshi Okami, Takashi Mizota, Yuki Ueya, Junya Matsuoka, Nobuaki Tsuji
  • Patent number: 9768251
    Abstract: A method for manufacturing a semiconductor structure comprises the steps of: providing a substrate including a first semiconductor material; forming a dielectric layer on a surface of the substrate; forming an opening in the dielectric layer having a bottom reaching the substrate; providing a second semiconductor material in the opening and on the substrate, the second semiconductor material being en-capsulated by a further dielectric material thereby forming a filled cavity; melting the second semiconductor material in the cavity; recrystallizing the second semi-conductor material in the cavity; laterally removing the second semiconductor material at least partially for forming a lateral surface at the second semiconductor material; and forming a third semiconductor material on the lateral surface of the second semiconductor material, wherein the third semiconductor material is different from the second semiconductor material.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: September 19, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Mattias B. Borg, Kirsten E. Moselund, Heike E. Riel, Heinz Schmid
  • Patent number: 9768096
    Abstract: A mobile terminal is provided. The mobile terminal includes a circuit board, where a chip is disposed on a first surface of the circuit board. A groove is provided on a second surface of the circuit board. The mobile terminal further includes: a heat pipe that is disposed in the groove. One end of the heat pipe extends to a side wall of the circuit board or outside a side wall of the circuit board.
    Type: Grant
    Filed: March 20, 2014
    Date of Patent: September 19, 2017
    Assignee: Huawei Device Co., Ltd.
    Inventors: Longping Yan, Konggang Wei, Hualin Li
  • Patent number: 9761598
    Abstract: To provide a semiconductor device with excellent charge retention characteristics, a transistor including a thick gate insulating film to achieve low leakage current is additionally provided such that its gate is connected to a node for holding charge. The node is composed of this additional transistor and a transistor using an oxide semiconductor in its semiconductor layer including a channel formation region. Charge corresponding to data is held at the node.
    Type: Grant
    Filed: June 19, 2014
    Date of Patent: September 12, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Yoshiyuki Kurokawa
  • Patent number: 9761582
    Abstract: A semiconductor device comprising: a first electrode; a first semiconductor region of a first conductivity type; a second semiconductor region of a second conductivity type; a third semiconductor region of the second conductivity type provided between the first semiconductor region and the second semiconductor region on the first electrode and having a higher carrier concentration of the second conductivity type than the second semiconductor region; a fourth semiconductor region; a fifth semiconductor region; a sixth semiconductor region; a seventh semiconductor region; a gate electrode; a gate insulating layer; and a second electrode provided on the fifth semiconductor region and the seventh semiconductor region.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: September 12, 2017
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Ryohei Gejo, Kazutoshi Nakamura, Norio Yasuhara, Tomohiro Tamaki
  • Patent number: 9755119
    Abstract: A method of manufacturing a light emitting device includes preparing wafer with a plurality of light emitting elements arrayed on a growth substrate, on a first side of a semiconductor stacked layer body, forming a resin layer which includes metal wires respectively connected to a p-side electrode and an n-side electrode, forming a groove by removing at least portion of the resin layer from an upper surface side in a boundary region between the light emitting elements and exposing end surfaces of metal wires which are internal conductive members on an inner side surface defining a groove, forming electrodes for external connection respectively connecting to exposed end surfaces of metal wires, and singulating the wafer into a plurality of singulated light emitting elements.
    Type: Grant
    Filed: January 16, 2015
    Date of Patent: September 5, 2017
    Assignee: NICHIA CORPORATION
    Inventors: Akinori Yoneda, Shinji Nakamura, Yoshiyuki Aihara
  • Patent number: 9755107
    Abstract: The present invention provides a Group III nitride semiconductor light-emitting device exhibiting improved emission efficiency. The Group III nitride semiconductor light-emitting device includes a base layer, an n-type superlattice layer, a light-emitting layer, and a p-type cladding layer, each of the layers being made of Group III nitride semiconductor. An electron injection adjusting layer comprising a single AlxGa1-xN (0<x<1) layer and having a thickness of 5 ? to 30 ? is formed in the base layer. The n-type superlattice layer is a superlattice layer having a periodic structure of an InyGa1-yN (0<y<1) layer, an i-GaN layer, and an n-GaN layer. The electron injection adjusting layer has a thickness of 5 ? to 30 ? and an Al composition ratio of 0.15 to 0.5.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: September 5, 2017
    Assignee: TOYODA GOSEI CO., LTD.
    Inventor: Koji Okuno
  • Patent number: 9754837
    Abstract: Various embodiments include methods and integrated circuit structures. In some cases, a method of forming an integrated circuit structure can include: forming a mask over an oxide layer and an underlying set of fin structures, the set of fin structures including a plurality of fins each having a substrate base and a silicide layer over the substrate base; implanting the oxide layer through an opening in the mask; removing the mask; polishing the oxide layer overlying the set of fin structures after removing the mask to expose the set of fin structures; and forming a nitride layer over the set of fin structures.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: September 5, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Haigou Huang, Jinping Liu, Huang Liu, Taifong Chao
  • Patent number: 9755076
    Abstract: Semiconductor devices include a strain-inducing layer capable of applying a strain to a channel region of a transistor included in a miniaturized electronic device, and a method of manufacturing the semiconductor device. The semiconductor device includes a substrate having a channel region; a pair of source/drain regions provided on the substrate and arranged on both sides of the channel region in a first direction; and a gate structure provided on the channel region and comprising a gate electrode pattern extending in a second direction that is different from the first direction, a gate dielectric layer disposed between the channel region and the gate electrode pattern, and a gate spacer covering respective lateral surfaces of the gate electrode pattern and the gate dielectric layer. At least one of the source/drain regions includes a first strain-inducing layer and a second strain-inducing layer.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: September 5, 2017
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seok-hoon Kim, Jin-bum Kim, Kwan-heum Lee, Byeong-chan Lee, Cho-eun Lee, Su-jin Jung
  • Patent number: 9748473
    Abstract: An apparatus includes a substrate having a planar top surface, a sequence of crystalline semiconductor layers located on the planar surface, and first and second sets of electrodes located over the sequence. The sequence of crystalline semiconductor layers has a 2D quantum well therein. The first set of electrodes border opposite sides of a lateral region of the sequence and are controllable to vary a width of a non-depleted portion of the quantum well along the top surface. The second set of electrodes border first and second channels between the lateral region and first and second adjacent lateral areas of the sequence and are controllable to vary widths of non-depleted segments of the quantum well in the channels. The electrodes are located such that straight lines connecting the first and second lateral areas via the channels either pass between one of the electrodes and the substrate or are misaligned to an effective [1 1 0] lattice direction of the sequence.
    Type: Grant
    Filed: February 11, 2015
    Date of Patent: August 29, 2017
    Assignee: Alcatel Lucent
    Inventor: Robert L. Willett
  • Patent number: 9748403
    Abstract: The reliability of a transistor including an oxide semiconductor is improved. The transistor in a semiconductor device includes a first oxide semiconductor film over a first insulating film, a gate insulating film over the first oxide semiconductor film, a second oxide semiconductor film over the gate insulating film, and a second insulating film over the first oxide semiconductor film and the second oxide semiconductor film. The first oxide semiconductor film includes a channel region overlapping with the second oxide semiconductor film, a source region and a drain region each in contact with the second insulating film. The channel region includes a first layer and a second layer in contact with a top surface of the first layer and covering a side surface of the first layer in the channel width direction. The second oxide semiconductor film has a higher carrier density than the first oxide semiconductor film.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: August 29, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Junichi Koezuka, Masami Jintyou, Yukinori Shima
  • Patent number: 9741905
    Abstract: An optoelectronic element includes an optoelectronic unit, a first metal layer, a second metal layer, a conductive layer and a transparent structure. The optoelectronic unit has a central line in a top view, a top surface, and a bottom surface. The second metal layer is formed on the top surface, and has an extension portion crossing over the central line and extending to the first metal layer. The conductive layer covers the first metal layer and the extension portion. The transparent structure covers the bottom surface without covering the top surface.
    Type: Grant
    Filed: September 18, 2015
    Date of Patent: August 22, 2017
    Assignee: Epistar Corporation
    Inventors: Cheng-Nan Han, Tsung-Xian Lee, Min-Hsun Hsieh, Hung-Hsuan Chen, Hsin-Mao Liu, Hsing-Chao Chen, Ching San Tao, Chih-Peng Ni, Tzer-Perng Chen, Jen-Chau Wu, Masafumi Sano, Chih-Ming Wang
  • Patent number: 9735260
    Abstract: A semiconductor device has a stacked structure in which a p-GaN layer, an SI-GaN layer, and an AlGaN layer are stacked, and has a gate electrode that is formed at a top surface side of the AlGaN layer. A band gap of the AlGaN layer is wider than a band gap of the p-GaN layer and the SI-GaN layer. Moreover, impurity concentration of the SI-GaN layer is less than 1×1017 cm?3. Semiconductor devices including III-V semiconductors may have a stable normally-off operation.
    Type: Grant
    Filed: February 27, 2014
    Date of Patent: August 15, 2017
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masahiro Sugimoto, Tetsu Kachi, Yoshitaka Nakano, Tsutomu Uesugi, Hiroyuki Ueda, Narumasa Soejima
  • Patent number: 9698233
    Abstract: Tunnel insulation layer structures and methods of manufacturing the same are disclosed. The tunnel insulation layer structures may include a first tunnel insulation layer, a second tunnel insulation layer, a third tunnel insulation layer, a fourth tunnel insulation layer and a fifth tunnel insulation layer. The first tunnel insulation layer on a substrate has a first band gap energy. The second tunnel insulation layer on the first tunnel insulation layer has a second band gap energy which is lower than the first band gap energy. The third tunnel insulation layer on the second tunnel insulation layer has a third band gap energy which is higher than the second band gap energy. The fourth tunnel insulation layer on the third tunnel insulation layer has a fourth band gap energy which is lower than the third band gap energy. The fifth tunnel insulation layer on the fourth tunnel insulation layer has a fifth band gap energy which is higher than the fourth band gap energy.
    Type: Grant
    Filed: March 11, 2015
    Date of Patent: July 4, 2017
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Eun-Yeoung Choi, Young-Jin Noh, Bi-O Kim, Kwang-Min Park, Jae-Young Ahn, Ju-Mi Yun, Jae-Ho Choi, Ki-Hyun Hwang
  • Patent number: 9691777
    Abstract: A semiconductor memory device includes a semiconductor substrate, a first insulating film disposed on the semiconductor substrate, a first conductive film disposed on the first insulating film, a second insulating film disposed on the first conductive film, a second conductive film disposed on the second insulating film, a first electrode disposed on the first conductive film through an opening formed in the second conductive film and the second insulating film, and having a first width, a second electrode that is formed on the first electrode and having a second width, and a wiring layer that is formed on the second electrode. A first width of the first electrode is wider than a second width of the second electrode.
    Type: Grant
    Filed: February 5, 2015
    Date of Patent: June 27, 2017
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventor: Shoichi Miyazaki
  • Patent number: 9691756
    Abstract: The nonvolatile memory device includes a memory cell having a transistor in which an insulating isolation layer is formed in a channel region. The nonvolatile memory device includes a metal-oxide-semiconductor (MOS) transistor as a basic component. An insulating isolation layer is formed in at least a channel region, and a gate insulating layer includes an insulating layer or a variable resistor and serves as a data storage. A gate includes a metal layer formed in a lower portion thereof. First source and drain regions are lightly doped with a dopant, and second source and drain regions are heavily doped with a dopant.
    Type: Grant
    Filed: April 22, 2013
    Date of Patent: June 27, 2017
    Assignee: Rangduru Inc.
    Inventor: Euipil Kwon
  • Patent number: 9682858
    Abstract: An physical quantity sensor includes a substrate, a piezoelectric resistive element that is disposed on one surface side of the substrate, a wall portion that is disposed on the one surface side of the substrate so as to surround the piezoelectric resistive element in a plan view of the substrate, and a ceiling portion that is disposed on an opposite side to the substrate with respect to the wall portion and forms a cavity along with the wall portion, in which the wall portion includes an insulating layer, and wiring layers that surround the insulating layer together and have higher resistance to an etchant which can etch the insulating layer than resistance of the insulating layer.
    Type: Grant
    Filed: November 17, 2015
    Date of Patent: June 20, 2017
    Assignee: SEIKO EPSON CORPORATION
    Inventor: Nobuyuki Tanaka
  • Patent number: 9685404
    Abstract: A BEOL e-fuse is disclosed which reliably blows in the via and can be formed even in the tightest pitch BEOL layers. The BEOL e-fuse can be formed utilizing a line first dual damascene process to create a sub-lithographic via to be the programmable link of the e-fuse. The sub-lithographic via can be patterned using standard lithography and the cross section of the via can be tuned to match the target programming current.
    Type: Grant
    Filed: January 11, 2012
    Date of Patent: June 20, 2017
    Assignee: International Business Machines Corporation
    Inventors: Junjing Bao, Griselda Bonilla, Kaushik Chanda, Samuel S. Choi, Ronald Filippi, Stephan Grunow, Naftali E. Lustig, Dan Moy, Andrew H. Simon