Patents Examined by Ermias Woldegeorgis
  • Patent number: 9449883
    Abstract: First protective films are formed to cover side surfaces of gate electrode portions. In an nMOS region, an extention implantation region is formed by causing a portion of the first protective film located on the side surface of the gate electrode portion to function as an offset spacer and using the offset spacer as a mask, and then, cleaning is done. Since silicon nitride films are formed on surfaces of the first protective films, the resistance to chemical solutions is improved. Furthermore, second protective films are formed on the first protective films, respectively. In a pMOS region, an extention implantation region is formed by causing a portion of the first protective film and a portion of the second protective film located on the side surface of the gate electrode portion to function as an offset spacer and using the offset spacer as the mask, and then, cleaning is done.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: September 20, 2016
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventors: Hisayuki Kato, Yoshihiko Kusakabe
  • Patent number: 9448585
    Abstract: A clamping structure includes an object, a clamping component and an elastic component. The object has a hole and a containing space, wherein the containing space is connected to the hole. The clamping component includes a pillar, a bump and a head portion, wherein the bump and the head portion are connected to the pillar, and the pillar is adapted to be inserted into the hole and rotated such that the bump moves to the containing space. When the bump is located in the containing space, the elastic component is compressed between the object and the head portion, and the bump is positioned at the containing space by elastic force of the elastic component, such that the clamping component is fastened to the object.
    Type: Grant
    Filed: July 8, 2014
    Date of Patent: September 20, 2016
    Assignee: Wistron Corporation
    Inventors: Jui-Kai Cheng, Chia-Lin Yu, Ju-Ching Lin, Ya-Jiun Tzeng, Chu-Ting Yang
  • Patent number: 9443929
    Abstract: A semiconductor structure and method for forming a shallow trench isolation (STI) structure having one or more oxide layers and a nitride plug. Specifically, the structure and method involves forming one or more trenches in a substrate. The STI structure is formed having one or more oxide layers and a nitride plug, wherein the STI structure is formed on and adjacent to at least one of the one or more trenches. One or more gates are formed on the substrate and spaced at a distance from each other. A dielectric layer is formed on and adjacent to the substrate, the STI structure, and the one or more gates.
    Type: Grant
    Filed: November 4, 2014
    Date of Patent: September 13, 2016
    Assignee: International Business Machines Corporation
    Inventors: Byeong Y. Kim, Shreesh Narasimha
  • Patent number: 9437722
    Abstract: A vertical power component includes a silicon substrate of a first conductivity type with a well of the second conductivity type on a lower surface of the substrate. The first well is bordered at a component periphery with an insulating porous silicon ring. An upper surface of the porous silicon ring is only in contact with the substrate of the first conductivity type. The insulating porous silicon ring penetrates into the substrate down to a depth greater than a thickness of the well.
    Type: Grant
    Filed: October 9, 2014
    Date of Patent: September 6, 2016
    Assignees: STMicroelectronics (Tours) SAS, Universite Francois Rabelais
    Inventors: Samuel Menard, Gael Gautier
  • Patent number: 9437780
    Abstract: An optoelectronic semiconductor device in accordance with an embodiment of present invention includes a conversion unit having a first side; an electrical connector; a contact layer having an outer perimeter; and at least three successive discontinuous-regions formed along the outer perimeter and having at least one different factor; wherein the electrical connector, the contact layer, and the discontinuous-regions are formed on the first side of the conversion unit.
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: September 6, 2016
    Assignee: EPISTAR CORPORATION
    Inventors: Tsun-Kai Ko, Schang-Jing Hon, Chien-Kai Chung, Hui-Chen Yeh, An-Ju Lin, Chien-Fu Shen, Chen Ou
  • Patent number: 9431305
    Abstract: A method of fabricating a vertical field effect transistor including forming a first recess in a substrate; epitaxially growing a first drain from the first bottom surface of the first recess; epitaxially growing a second drain from the second bottom surface of a second recess formed in the substrate; growing a channel material epitaxially on the first drain and the second drain; forming troughs in the channel material to form one or more fin channels on the first drain and one or more fin channels on the second drain, wherein the troughs over the first drain extend to the surface of the first drain, and the troughs over the second drain extend to the surface of the second drain; forming a gate structure on each of the one or more fin channels; and growing sources on each of the fin channels associated with the first and second drains.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: August 30, 2016
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Bruce B. Doris, Seong-Dong Kim, Rajasekhar Venigalla
  • Patent number: 9425192
    Abstract: Power supply decoupling capacitors are provided for integrated circuits. The decoupling capacitors may be distributed in clusters amongst powered circuit components. Each cluster may contain a number of individual capacitor cells that are connected in parallel. Each capacitor cell may contain a capacitor and a resistor connected in series with the capacitor. The capacitors may be metal-insulator-metal (MIM) capacitors. The resistor in each cell may limit the current through an individual capacitor in the event of a short in the capacitor due to a dielectric defect.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: August 23, 2016
    Assignee: Altera Corporation
    Inventors: Irfan Rahim, William Bradley Vest, Myron Wai Wong
  • Patent number: 9425242
    Abstract: An organic light emitting diode (OLED) display includes: a substrate; a first semiconductor layer and a second semiconductor layer separated from each other on a same surface of the substrate, a first insulating layer on the first semiconductor layer and the second semiconductor layer, a first gate electrode and a second gate electrode respectively overlapping the first semiconductor layer and the second semiconductor layer, a second insulating layer on the first gate electrode and the second gate electrode; a first storage electrode overlapping the first gate electrode on the second insulating layer, a third insulating layer on the first storage electrode, and a second storage electrode overlapping the first storage electrode on the third insulating layer.
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: August 23, 2016
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventors: Joong-Soo Moon, Hyun-Chol Bang
  • Patent number: 9419077
    Abstract: A semiconductor device can include a field insulation layer including a planar major surface extending in first and second orthogonal directions and a protruding portion that protrudes a particular distance from the major surface relative to the first and second orthogonal directions. First and second multi-channel active fins can extend on the field insulation layer, and can be separated from one another by the protruding portion. A conductive layer can extend from an uppermost surface of the protruding portion to cross over the protruding portion between the first and second multi-channel active fins.
    Type: Grant
    Filed: August 13, 2014
    Date of Patent: August 16, 2016
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Shigenobu Maeda, Hee-Soo Kang, Sang-Pil Sim, Soo-Hun Hong
  • Patent number: 9417186
    Abstract: Some embodiments of the present disclosure relate to an infrared (IR) opto-electronic sensor having a silicon waveguide implemented on a single silicon integrated chip. The IR sensor has a semiconductor substrate having a silicon waveguide extends along a length between a radiation input conduit and a radiation output conduit. The radiation input conduit couples radiation into the silicon waveguide, while the radiation output conduit couples radiation out from the silicon waveguide. The silicon waveguide conveys the IR radiation from the radiation input conduit to the radiation output conduit at a single mode. As the radiation is conveyed by the silicon waveguide, an evanescent field is formed that extends outward from the silicon waveguide to interact with a sample positioned between the radiation input conduit and the radiation output conduit.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: August 16, 2016
    Assignee: Infineon Technologies AG
    Inventors: Bernhard Jakoby, Ventsislav Lachiev, Thomas Grille, Peter Irsigler, Ursula Hedenig, Sokratis Sgouridis, Thomas Krotscheck Ostermann
  • Patent number: 9416000
    Abstract: To implement cavities having different internal pressures in joining two semiconductor elements, at least one of the two element surfaces to be joined is structured, so that at least one circumferential bonding frame area is recessed or elevated in comparison with at least one other circumferential bonding frame area. At least one connecting layer should then be applied to this structured element surface and at least two circumferential bonding frames should be structured out of this connecting layer on different surface levels of the element surface. The topography created in the element surface permits sequential bonding in which multiple cavities between the two elements may be successively hermetically sealed, so that a defined internal pressure prevails in each of the cavities.
    Type: Grant
    Filed: June 5, 2015
    Date of Patent: August 16, 2016
    Assignee: ROBERT BOSCH GMBH
    Inventors: Christoph Schelling, Ralf Reichenbach, Jens Frey, Antoine Puygranier
  • Patent number: 9412970
    Abstract: A barrier film composite includes a heat-shrinkable layer having a conformable surface conforming to a surface shape of an object in contact with the heat-shrinkable layer, and a flat surface disposed opposite to the conformable surface; and a barrier layer having a smaller thickness than the heat-shrinkable layer and disposed flat on the flat surface of the heat-shrinkable layer.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: August 9, 2016
    Assignee: Samsung Display Co., Ltd.
    Inventors: Dong-Won Han, Robert Jan Visser, Lorenza Moro
  • Patent number: 9401368
    Abstract: Various embodiments provide memory devices and methods for forming the same. A substrate is provided, the substrate having one or more adjacent memory cells formed thereon. Each memory cell includes a gate structure, a control gate layer, and a first mask layer. A portion of the control gate layer is removed, to reduce a size of an exposed portion of the control gate layer in a direction parallel to a surface of the substrate. An electrical contact layer is formed on an exposed sidewall of the control gate layer and an exposed surface of the substrate. A barrier layer is formed on a sidewall of the memory cell. A conductive structure is formed on the substrate. The conductive structure has a significantly larger distance from control gate layer than from the gate structure, and the barrier layer forms an isolation layer between the conductive structure and the control gate layer.
    Type: Grant
    Filed: October 8, 2014
    Date of Patent: July 26, 2016
    Assignee: SEMICONDUCTOR MANUFACTURING INTERNATIONAL (SHANGHAI) CORPORATION
    Inventors: Zhongshan Hong, Yun Yang
  • Patent number: 9401348
    Abstract: There is provided a semiconductor light emitting device including: a heat dissipation structure including one or more of materials among a metal, a ceramic, a semiconductor, and a resin; a flexible insulating layer directly in contact with the heat dissipation structure; a conductive layer laminated on the flexible insulating layer; and a light emitting device mounted on the conductive layer, wherein the light emitting device includes a light emitting structure including a first conductivity-type semiconductor layer, an active layer, and a second conductivity-type semiconductor layer; and first and second electrodes connected to the first and second conductivity-type semiconductor layers, respectively, and the first electrode includes a plurality of conductive vias connected to the first conductivity-type semiconductor layer through the second conductivity-type semiconductor layer and the active layer.
    Type: Grant
    Filed: June 19, 2014
    Date of Patent: July 26, 2016
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Young Jeong Yoon, Yeon Woo Lee, Sung Min Jang
  • Patent number: 9401420
    Abstract: Semiconductor device including: silicon-based substrate; first buffer layer on silicon-based substrate and is formed of first layer containing Al composition and second layer containing less Al than the first layer, the first and second layers being alternately stacked; second buffer layer on the first buffer layer and is formed of third layer containing Al composition and fourth layer containing less Al than the third layer, the third and fourth layers being alternately stacked; and third buffer layer on the second buffer layer and is formed of fifth layer containing Al composition and sixth layer containing less Al than the fifth layer, the fifth and sixth layers being alternately stacked, wherein the second buffer layer contains more Al than the first and third buffer layers. Thus, the semiconductor device leakage can be suppressed while reducing stress which is applied to buffer layer and can improve flatness of active layer upper face.
    Type: Grant
    Filed: May 2, 2014
    Date of Patent: July 26, 2016
    Assignees: SHANKEN ELECTRIC CO., LTD., SHIN-ETSU HANDOTAI CO., LTD.
    Inventors: Hiroshi Shikauchi, Ken Sato, Hirokazu Goto, Masaru Shinomiya, Keitaro Tsuchiya, Kazunori Hagimoto
  • Patent number: 9397255
    Abstract: An object is to provide a semiconductor device with high aperture ratio or a manufacturing method thereof. Another object is to provide semiconductor device with low power consumption or a manufacturing method thereof. A light-transmitting conductive layer which functions as a gate electrode, a gate insulating film formed over the light-transmitting conductive layer, a semiconductor layer formed over the light-transmitting conductive layer which functions as the gate electrode with the gate insulating film interposed therebetween, and a light-transmitting conductive layer which is electrically connected to the semiconductor layer and functions as source and drain electrodes are included.
    Type: Grant
    Filed: December 29, 2014
    Date of Patent: July 19, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Hajime Kimura
  • Patent number: 9398694
    Abstract: The present invention relates to the field of integrating electronic systems that operate at mm-wave and THz frequencies. A monolithic multichip package, a carrier structure for such a package as well as manufacturing methods for manufacturing such a package and such a carrier structure are proposed to obtain a package that fully shields different functions of the mm-wave/THz system. The package is poured into place by polymerizing photo sensitive monomers. It gradually grows around and above the MMICs (Monolithically Microwave Integrated Circuit) making connection to the MMICs but recessing the high frequency areas of the chip. The proposed approach leads to functional blocks that are electromagnetically completely shielded. These units can be combined and cascaded according to system needs.
    Type: Grant
    Filed: January 11, 2012
    Date of Patent: July 19, 2016
    Assignee: Sony Corporation
    Inventors: Thomas Merkle, Stefan Koch, Joo-Young Choi
  • Patent number: 9396982
    Abstract: A semiconductor package and a manufacturing method thereof are provided. The package element has a first insulating layer, and a plurality of holes are disposed on the first surface of the first insulating layer. Besides, a plurality of package traces are embedded in the insulating layer and connected to the other end of the holes. The holes function as a positioning setting for connecting the solder balls to the package traces, such that the signal of the semiconductor chip is connected to the package trace via conductor of the chip, and further transmitted externally via solder ball. The elastic modulus of the material of the first insulating layer is preferably larger than 1.0 GPa.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: July 19, 2016
    Assignee: ADVANPACK SOLUTIONS PTE LTD.
    Inventors: Hwee-Seng Jimmy Chew, Chee Kian Ong, Bin Chichik Abd. Razak
  • Patent number: 9392697
    Abstract: A method of manufacturing a package may include forming a package module by disposing a plurality of components on an insulating plate filled with a viscous insulating liquid and curing the viscous insulating liquid, exposing at least portions of terminals of the plurality of components by polishing the insulating plate to have a predetermined thickness and then etching at least one portion of the insulating plate, forming a conductive stud on the at least exposed portions of the terminals and cutting the package module into predetermined unit packages, and examining reliability of a printed circuit board and bonding the unit package to the printed circuit board having confirmed reliability using the conductive stud.
    Type: Grant
    Filed: July 10, 2014
    Date of Patent: July 12, 2016
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventor: Jin O Yoo
  • Patent number: 9379293
    Abstract: A ceramic green wavelength conversion element (120) is coated with a red wavelength conversion material (330) and placed above a blue light emitting element (110) such that the ceramic element (120) is attached to the light emitting element (110), thereby providing an efficient thermal coupling from the red and green converters (330, 120) to the light emitting element (110) and its associated heat sink. To protect the red converter coating (330) from the effects of subsequent processes, a sacrificial clear coating (340) is created above the red converter element (330). This clear coating (340) may be provided as a discrete layer of clear material, or it may be produced by allowing the red converters to settle to the bottom of its suspension material, thereby forming a converter-free upper layer that can be subjected to the subsequent fabrication processes.
    Type: Grant
    Filed: July 12, 2013
    Date of Patent: June 28, 2016
    Assignee: Koninklijke Philips N.V.
    Inventors: April Dawn Schricker, Kim Kevin Mai, Grigoriy Basin, Uwe Mackens, Joost Peter Andre Vogels, Aldegonda Lucia Weijers, Karl Adriaan Zijtveld