Abstract: In a process for reducing the sulfur and ash contents of coal, coal is sequentially contacted with fused alkali metal caustic, water, carbonic acid, and a strong acid. Caustic removed from the coal by the water and the carbonic acid is recovered as anhydrous caustic for again contacting coal.
Type:
Grant
Filed:
October 11, 1989
Date of Patent:
October 22, 1991
Assignees:
TRW Inc.
Inventors:
Robert A. Meyers, Walter D. Hart, Leslie J. Van Nice, deceased, Leslie J. Van Nice, heir
Abstract: Disclosed is a process for selective hydrogenation in liquid phase of an effluent originating from an ethane steam cracker in which said effluent is contacted with a catalyst consisting of at least supported palladium characterized in that it is carried out in the presence of a liquid phase containing at least part of the hydrogenated gasoline cut, condensed and recycled, of said effluent.Said effluent (1), said liquid phase (8) and possibly hydrogen (13) pass through the hydrogenation reactor (4). The product obtained is fractionated (5) into a gaseous cut at the top (7) containing ethylene and a liquid gasoline cut at the bottom which is partially recycled (8).The process may be used for production of ethylene and for production of gasoline.
Abstract: The present invention provides a method for reprocessing, particularly the dehalogenation, of oil products which involves a) treating the oil product at temperatures up to about 150.degree. C. with an effective amount of an aqueous solution of at least one compound selected from the group consisting of a strong acid, a salt of a weak base and a strong acid and precursors thereof; b) treating the oil product of step (a) at increased temperatures with at least one halogen binding agent; and c) separating water and/or the solids from the treated oil product of step (b).
Abstract: A catalytic cracking process especially useful for the catalytic cracking of high metals content feeds including resids in which the feed is cracked in the presence of a catalyst additive comprising an alkaline earth metal oxide and an alkaline earth metal spinel, preferably a magnesium aluminate spinel which acts as a trap for vanadium as well as an agent for reducing the content of sulfur oxides in the regenerator flue gas. The additive is used in the form of a separate additive from the cracking catalyst particles in order to keep the vanadium away from the cracking catalyst and so preserve the activity of the catalyst; in addition, use of separate additive particles permits the makeup rate for the additive to be varied relative to that of the cracking catalyst in order to deal with variations in the metals and sulfur content of the cracking feed.
Type:
Grant
Filed:
June 10, 1988
Date of Patent:
October 15, 1991
Assignee:
Mobil Oil Corporation
Inventors:
Arthur A. Chin, Ajit V. Sapre, Michael S. Sarli
Abstract: Heavy crude oils are upgraded thermally in the presence of water and a polyhydroxy metal bentonite in an autoclave, particularly at a temperature of about 200.degree. to about 300.degree. C.
Abstract: A process for upgrading of unstable olefins, naphthas, and dienes, such as coker naphthas, is disclosed. The olefins in the unstable naphthas are oligomerized over a shape selective zeolite to gasoline and distillate products. The dienes are catalytically converted by the same zeolite. Preferably, hydrogen is added to increase catalyst life. Feed pretreatment, to remove basic nitrogen compounds also improves catalyst life. Water washing of coker naphtha is the preferred method of removing basic nitrogen compounds.
Type:
Grant
Filed:
November 16, 1989
Date of Patent:
October 1, 1991
Assignee:
Mobil Oil Corporation
Inventors:
James H. Beech, Jr., Francis P. Ragonese, James A. Stoos, Sergei Yurchak
Abstract: A method of converting natural gas or light alkane(s) into unsaturated hydrocarbons, consisting in providing inside of a reaction space a fluidized bed of particles of a refractory and advantageously catalytic material and feeding a plasma of a hydrogen-containing gas and the natural gas or the light alkane(s) into the bed so that the latter effects the quenching of the reaction medium and catalyses the conversion reaction.
Type:
Grant
Filed:
November 22, 1989
Date of Patent:
October 1, 1991
Assignee:
Gaz de France
Inventors:
Mehrdad Nikravech, Isabelle Vedrenne, Jacques Amouroux, Jacques Saint-Just
Abstract: The composition of asphalt pavements can be determined through bitument extraction, employing an alicyclic hydrocarbon as extractant under subcritical conditions. For example, cyclohexane is so employed in conjunction with an apparatus hereof.
Abstract: Conversion of benzene to heavier aromatics by contact with alkyl polynucleararomatics, preferably FCC heavy cycle oil, in the presence of an alkylation/transalkylation catalyst is disclosed. Efficient conversion of relatively dilute benzene in reformate is possible. Use of alkyl polynucleararomatics as a source of alkyl groups, with reduced use of monocyclic alkyl aromatics, permits robust reaction conditions to be used without a net formation of benzene by dealkylation. The process preferably uses a solid zeolite based acidic catalyst disposed in a fixed, moving or fluid bed reactor. Preferred catalysts comprise MCM-22 or ZSM-5.
Abstract: A process is disclosed for reducing the impact of basic compounds, such as nitrogen, on hydrocarbonaceous feed intended for catalytic cracking. In a preferred embodiment, a portion of the regenerated catalyst of a catalytic cracking process is separated and contacted with the hydrocarbonaceous feed at a temperature and for a time sufficient to strongly bind the basic contaminants in the feed with the separated portion of the acid catalyst. The feed is then passed to the catalytic cracking reactor in a slurry with the separated catalyst, resulting in a desirable conversion increase.
Abstract: A process is disclosed for reprocessing contaminated oils, such as used crankcase oil from automobile engines, by thermal treatment, such as visbreaking, in the presence of other hydrocarbon feedstocks, followed by fractional distillation for the recovery of a gasoline fraction, a carboxylic acid fraction, a gas oil fraction containing chlorinated hydrocarbons and a high boiling bottoms fraction. The gas oil fraction is subjected to catalytic hydrocracking with the simultaneous destruction of chlorinated hydrocarbons. The resulting hydrocracked oils, after separation of hydrogen chloride, are free from chlorine compounds and other contaminants.
Type:
Grant
Filed:
November 22, 1989
Date of Patent:
September 17, 1991
Assignee:
RWE-Entsorgung Aktiengesellschaft
Inventors:
Karl H. Keim, Peter Seifried, Hartmut Hammer, Ralf Wehn
Abstract: A catalyst composition useful in the hydroprocessing of a sulfur- and metal-containing hydrocarbon feedstock comprises 1.0-5.0 weight percent of an oxide of nickel or cobalt and 10.0-25.0 weight percent of an oxide of molybdenum, all supported on a porous alumina support in such a manner that the molybdenum gradient of the catalyst has a value of less than 6.0 and 15-30% of the nickel or cobalt contained in the catalyst is in an acid extractable form. The catalyst is further characterized by having a total surface area of 150-210 m.sup.2 /g, a total more volume of 0.50-0.75 cc/g, and a pore size distribution such that pores having diameters of less than 100A constitute less than 25.0%, pores having diameters of 100-160A constitute 70.0-85.0% and pores having diameters of greater than 250A constitutes 1.0-15.0% of the total pore volume of the catalyst.
Type:
Grant
Filed:
May 13, 1988
Date of Patent:
September 10, 1991
Assignee:
Texaco Inc.
Inventors:
David E. Sherwood, Jr., Burton H. Bartley, Laurence D. Neff, Pei-Shing E. Dai
Abstract: Organic compound conversion over catalyst comprising the product of a method for controlling the catalytic activity of a large pore molecular sieve which contains framework boron is provided. Control is effected by treatment with a solution of a metal salt under conditions such that metal is incorporated into the molecular sieve framework.
Abstract: A process and apparatus are disclosed for achieving turbulent or fast fluidized bed regeneration of spent FCC catalyst in a bubbling bed regenerator having a stripper mounted over the regenerator and a stripped catalyst standpipe within the regenerator. A closed coke combustor vessel is added alongside an existing regenerator vessel, and spent catalyst is discharged into a transfer pot beneath the existing dense bed, then into the coke combustor. Catalyst is regenerated in a turbulent or fast fluidized bed, and discharged into the dilute phase region above the existing bubbling dense bed. The discharge line preferably encompasses, and is in a heat exchange relationship with, the spent catalyst standpipe. Discharge catalyst is collected in the bubbling dense bed surrounding the coke combustor, and may be given an additional stage of regeneration. Catalyst may be recycled from the dense bed to the transfer pot.
Abstract: The present invention provides a hydrogenation process for reprocessing used oil into secondary raffinates in the form of lubricating oils. In this process according to some embodiments of the invention, ecologically undesirable byproducts or waste materials are eliminated, without requiring expensive and time-consuming separation stages or reaction conditions, or the use of expensive catalysts. In particular, even severely contaminated oils, i.e. those which contain organo-chlorine compounds, in particular PCB, chlorinated dioxins and dibenzofurane in concentrations above certain limits, can also be reused as secondary raffinates, in particular as lubricating oils. No longer need these substances be destroyed in a high temperature combustion process, for example. As a first step, the coarse solid substances are removed from the used oil. Thereafter, with the addition of hydrogen, a hydrogenation step is conducted in a sump phase at predetermined pressures and temperatures.
Type:
Grant
Filed:
July 15, 1988
Date of Patent:
September 3, 1991
Assignee:
Ruhrkohle AG
Inventors:
Josef Langhoff, Alfons Jankowski, Harald Weber
Abstract: A process for catalytic multi-stage hydrogenation and liquefaction of coal to produce high yields of low-boiling hydrocarbon liquids containing low concentrations of nitogen compounds. First stage catalytic reaction conditions are 700.degree.-800.degree. F. temperature, 1500-3500 psig hydrogen partial pressure, with the space velocity maintained in a critical range of 10-40 lb coal/hr ft.sup.3 catalyst settled volume. The first stage catalyst has 0.3-1.2 cc/gm total pore volume with at least 25% of the pore volume in pores having diameters of 200-2000 Angstroms. Second stage reaction conditions are 760.degree.-870.degree. F. temperature with space velocity exceeding that in the first stage reactor, so as to achieve increased hydrogenation yield of low-boiling hydrocarbon liquid products having at least 75% removal of nitrogen compounds from the coal-derived liquid products.
Abstract: An improved method for detoxifying waste materials contaminated with halogenated hydrocarbons is disclosed. The method achieves dehalogenation of such halogenated hydrocarbons in a manner as efficient as previous methods, but at a considerably lower cost. The economic advantages of the present invention arise from the use of lower temperatures and/or smaller quantities of reagents, which in turn are made possible by the discovery of a surprisingly superior reagent, 2-methoxyethanol.
Abstract: A catalytic reforming process in which sulfur moieties are removed from a gaseous product stream by use of a sulfur trap comprised of about 10 to about 70 wt. % nickel dispersed on a support. The sulfur which is removed is both sulfur which is inherent in the feed as well as sulfur which results from presulfiding the catalyst.
Abstract: A lubricating oil stock is extracted with N-methyl-2-pyrrolidone to yield a primary raffinate useful as a high VI lubricating base oil and a primary extract. The primary extract is mixed with antisolvent and chilled to yield a secondary raffinate. This secondary raffinate is sufficiently reduced in aromatics that it is suitable for fluidized catalytic cracking in the absence of hydrogenation.
Abstract: A process is provided for removing heavy metal compounds from heavy crude oil by mixing the heavy crude oil with tar sand; preheating the mixture to a temperature of about 650.degree. F.; heating said mixture to up to 800.degree. F.; and separating tar sand from the light oils formed during said heating. The heavy metals removed from the heavy oils can be recovered from the spent sand for other uses.
Type:
Grant
Filed:
July 12, 1989
Date of Patent:
August 20, 1991
Assignee:
Western Research Institute
Inventors:
Chang Y. Cha, John E. Boysen, Jan F. Branthaver