Patents Examined by Hieu P Nguyen
  • Patent number: 11223334
    Abstract: Disclosed herein are transimpedance circuits, as well as related methods and devices. In some embodiments, a transimpedance circuit may include a current source bias terminal, a current source output terminal, and a transimpedance amplifier coupled to the current source output terminal, wherein voltage signals at the current source bias terminal are correlated with voltage signals at the current source output terminal. In some embodiments, the current source may be a photodiode.
    Type: Grant
    Filed: March 18, 2020
    Date of Patent: January 11, 2022
    Assignee: ANALOG DEVICES INTERNATIONAL UNLIMITED COMPANY
    Inventors: Jinhua Ni, Wei Wang, Hui Shen
  • Patent number: 11223335
    Abstract: The exemplified disclosure presents a highly power efficient amplifier (e.g., front-end inverter and/or amplifier) that achieves significant current reuse (e.g., 6-time for a 3-stack embodiments) by stacking inverters and splitting the capacitor feedback network. In some embodiments, the exemplified technology facilitates N-time current reuse to substantially reduced power consumption. It is observed that the exemplified disclosure facilitates significant current-reuse operation that significantly boost gain gm while providing low noise performance without increasing power usage. In addition, the exemplified technology is implemented such that current reuse and number of transistor has a generally linear relationship and using fewer transistors as compared to known circuits of similar topology.
    Type: Grant
    Filed: June 4, 2018
    Date of Patent: January 11, 2022
    Assignee: Board of Regents, The University of Texas System
    Inventors: Nan Sun, Linxiao Shen
  • Patent number: 11223328
    Abstract: A dual-mode signal amplifying circuit includes: a first and a second input terminals for receiving differential input signals; two output terminals for providing differential output signals; a first through a third current sources; a first switch positioned between the first current source and a first node, and controlled by the first input terminal; a second switch positioned between the first current source and a second node, and controlled by the second input terminal; a third switch positioned between the first node and a fixed-voltage terminal, and controlled by a third node; a fourth switch positioned between the second node and a fixed-voltage terminal and controlled by the third node; a fifth switch positioned between the second current source and a fixed-voltage terminal, and controlled by the first node; and a sixth switch positioned between the third current source and a fixed-voltage terminal, and controlled by the second node.
    Type: Grant
    Filed: July 21, 2020
    Date of Patent: January 11, 2022
    Assignee: REALTEK SEMICONDUCTOR CORP.
    Inventors: Chao-Huang Wu, Yi-Shao Chang, Han-Chang Kang, Ka-Un Chan
  • Patent number: 11223330
    Abstract: An output driver for an audio system includes a pre-charge circuit. The pre-charge circuit includes a charging amplifier and a feedback bias circuit. A charging amplifier includes an output node for coupling to a capacitive load, a first input node for receiving a reference voltage, a second input node for coupling to the output node of the charging amplifier, and a bias node for receiving a bias current. An output current of the charging amplifier varies with the bias current. The feedback bias circuit is coupled to the output node to sense an output voltage of the charging amplifier, and configured to provide the bias current that varies with the output voltage of the charging amplifier.
    Type: Grant
    Filed: July 10, 2020
    Date of Patent: January 11, 2022
    Assignee: NUVOTON TECHNOLOGY CORPORATION
    Inventors: Chang-Xian Wu, Bal S. Sandhu
  • Patent number: 11223326
    Abstract: A multiple-stage amplifier includes a driver stage die and a final stage die. The driver stage die includes a first type of semiconductor substrate (e.g., a silicon substrate), a first transistor, and an integrated portion of an interstage impedance matching circuit. A control terminal of the first transistor is electrically coupled to an RF signal input terminal of the driver stage die, and the integrated portion of the interstage impedance matching circuit is electrically coupled between a current-carrying terminal of the first transistor and an RF signal output terminal of the driver stage die. The second die includes a III-V semiconductor substrate (e.g., a GaN substrate) and a second transistor. A connection, which is a non-integrated portion of the interstage impedance matching circuit, is electrically coupled between the RF signal output terminal of the driver stage die and an RF signal input terminal of the final stage die.
    Type: Grant
    Filed: July 24, 2020
    Date of Patent: January 11, 2022
    Assignee: NXP USA, Inc.
    Inventors: Joseph Gerard Schultz, Enver Krvavac, Olivier Lembeye, Cedric Cassan, Kevin Kim, Jeffrey Kevin Jones
  • Patent number: 11211905
    Abstract: According to one embodiment, in a first differential amplifier circuit of a semiconductor device, a first transistor receives an input signal at the gate. A second transistor forms a differential pair with the first transistor. The second transistor receives a reference signal at the gate. A third transistor is connected in series with the first transistor. A fourth transistor is connected in series with the second transistor. A fifth transistor is disposed on the output side. The fifth transistor forms a first current mirror circuit with the fourth transistor. A sixth transistor is connected to the drain of the second transistor in parallel with the fourth transistor. The sixth transistor forms a second current mirror circuit with the fifth transistor. A first discharge circuit is connected to the source of the sixth transistor.
    Type: Grant
    Filed: August 28, 2019
    Date of Patent: December 28, 2021
    Assignee: Toshiba Memory Corporation
    Inventors: Yohei Yasuda, Hidefumi Kushibe, Toshihiro Yagi
  • Patent number: 11211903
    Abstract: An over charge protection method applied to a voltage converter which can operate in a quaternary modulation mode (Q mode) or a ternary modulation mode (T mode). The over charge protection method comprises: (a) determining whether the voltage converter operates in the Q mode or the T mode; and (b) setting a current threshold of the voltage converter to a first over current threshold if the voltage converter operates in the T mode; and (c) setting the current threshold to a second over current threshold if the voltage converter operates in the Q mode, wherein the first current threshold is smaller than the second over current threshold.
    Type: Grant
    Filed: November 3, 2020
    Date of Patent: December 28, 2021
    Assignee: Elite Semiconductor Microelectronics Technology Inc.
    Inventors: Ya-Mien Hsu, Deng-Yao Shih, Yang-Jing Huang
  • Patent number: 11211901
    Abstract: An amplifier comprises a first capacitor, a second capacitor, a third capacitor, a fourth capacitor, a first transistor, a second transistor, and an output node. The first capacitor is electrically connected between a first power supply node and a first node, the second capacitor is electrically connected between the first node and a second node, the third capacitor is electrically connected between a second power supply node and a third node, and the fourth capacitor is electrically connected between the third node and a fourth node. The first transistor has a gate node electrically connected to the second node, and the second transistor has a gate node electrically connected to the fourth node. The output node is selectively connected to the first transistor and the second transistor. The first node and the third node are configured to be selectively electrically connected to a voltage node and a common voltage node.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: December 28, 2021
    Assignee: XILINX, INC.
    Inventors: Vipul Bajaj, Bruno Miguel Vaz
  • Patent number: 11211907
    Abstract: A Class D amplifier comprising a control circuit configured to receive an audio input signal and derive first, second and third PWM switching control signals therefrom, being supplied to respectively first, second and third switches of a driver, the first and second switches being serially arranged between first and second supply voltages, and having a common node coupled to an output terminal. The driver comprises a DC level shifter being configured to provide a reference voltage to a reference terminal in at least first and second states of operation, said reference voltage including a DC component at least substantially equidistant between the first and second supply voltages. Said third switch being included in a shunt path between the output and the reference terminal.
    Type: Grant
    Filed: May 30, 2020
    Date of Patent: December 28, 2021
    Assignee: Semiconductor Ideas to the Market (ITOM) B.V.
    Inventor: Wolfdietrich Georg Kasperkovitz
  • Patent number: 11211904
    Abstract: A switched-capacitor amplifier circuit includes multiple switched-capacitor networks, an amplifier, and multiple reset circuits. The switched-capacitor networks are configured to receive respective input voltages during a sampling phase, and generate sampled voltages. During an amplification phase, the amplifier is coupled with the switched-capacitor networks, and is configured to receive the sampled voltages. The amplifier is further configured to generate output voltages. During the sampling phase, the amplifier is coupled with the reset circuits, and is further configured to receive divided voltages such that the amplifier is reset. The reset circuits are configured to receive and provide a common-mode voltage and the output voltages to the amplifier. The divided voltages are generated based on the common-mode voltage and the output voltages. Each reset circuit includes at least one of a resistor and a capacitor.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: December 28, 2021
    Assignee: NXP B.V.
    Inventor: Sushil Kumar Gupta
  • Patent number: 11196394
    Abstract: A power amplifier module includes a first substrate and a second substrate, at least part of the second substrate being disposed in a region overlapping the first substrate. The second substrate includes a first amplifier circuit and a second amplifier circuit. The first substrate includes a first transformer including a primary winding having a first end and a second end and a secondary winding having a first end and a second end; a second transformer including a primary winding having a first end and a second end and a secondary winding having a first end and a second end; and multiple first conductors disposed in a row between the first transformer and the second transformer, each of the multiple first conductors extending from the wiring layer on a first main surface to the wiring layer on a second main surface of the substrate.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: December 7, 2021
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Shigeki Koya, Yasunari Umemoto, Yuichi Saito, Isao Obu, Takayuki Tsutsui
  • Patent number: 11190150
    Abstract: Methods and systems for amplifying signals are provided. Embodiments include a three-to-one multiplexer, a multiband RF variable gain amplifier (VGA), a multiband power amplifier driver (PAD), and a one-to three multiplexer. The three-to-one multiplexer receives three input signals from an RF frequency source and outputs an output signal corresponding one input signal. The multiband RF VGA receives the output signal of the three-to-one multiplexer, provides a first level of amplification to the signal received from the three-to-one multiplexer, and outputs an amplified version of the signal. The multiband PAD receives the signal output by the multiband RF variable gain amplifier and provides a second level of amplification to the signal and outputs an amplified version of the signal. The one-to-three multiplexer receives a signal output by the multiband PAD produces three output signals that correspond to each of the three input signals.
    Type: Grant
    Filed: April 17, 2007
    Date of Patent: November 30, 2021
    Assignee: HUWOMOBILITY, INC.
    Inventor: Lin Zhou
  • Patent number: 11177774
    Abstract: An amplifier device includes an alternate current (AC) coupling circuit, an amplifier circuit, and a first bias circuit. The amplifier circuit is configured to amplify an input signal to generate an output signal, in which the amplifier circuit includes a first input terminal, and the first input terminal receives the input signal via the AC coupling circuit. The first bias circuit is configured to apply a first bias voltage to the first input terminal according to one of the output signal and a first voltage, such that the amplifier circuit amplifies the input signal to output the output signal.
    Type: Grant
    Filed: May 7, 2020
    Date of Patent: November 16, 2021
    Assignee: REALTEK SEMICONDUCTOR CORPORATION
    Inventors: Heng-Chia Hsu, Jun Yang
  • Patent number: 11177775
    Abstract: A detection circuit that may include (i) a photosensor that is configured to convert light to current; wherein the photosensor has an output node and is configured to operate as a current source, (ii) an adder, and (iii) multiple amplification branches that are coupled in parallel between the adder and the output node of the photosensor. The multiple amplification branches do not share a feedback circuit, wherein all amplification branches of the multiple amplification branches comprise an amplifier of a same type, wherein the type is selected out of a transimpedance amplifier and a current amplifier.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: November 16, 2021
    Assignee: APPLIED MATERIALS ISRAEL LTD.
    Inventor: Pavel Margulis
  • Patent number: 11177785
    Abstract: A pulse width modulated (PWM) amplifier includes a synchronization logic circuit having a first input configured to receive a bridge control signal and having a second input configured to receive a clock signal. The synchronization logic circuit is configured to provide a slope switch signal and a reference switch signal. The PWM amplifier includes a ramp generator having a first input configured to receive a first voltage supply and having a second input configured to receive a second voltage supply and having a third input configured to receive the reference switch signal and having a fourth input configured to receive the slope switch signal. The ramp generator is configured to provide a ramp signal having a first slope responsive to the slope switch signal in a first state and having a second slope responsive to the slope switch signal in a second state and to provide the clock signal.
    Type: Grant
    Filed: September 18, 2020
    Date of Patent: November 16, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Shaik Asif Basha, Mohit Chawla, Jasjot Singh Chadha
  • Patent number: 11165392
    Abstract: Systems and methods including variable power amplifier bias impedance are disclosed. In one aspect, there is provided a power amplifier system including a bias circuit configured to receive a bias voltage and generate a bias signal and a power amplifier stage configured to receive an input radio frequency (RF) signal and generate an output RF signal. The power amplifier system may also include a bias impedance component operatively coupled between the bias circuit and the power amplifier stage. The bias impedance is component configured to receive a control signal and adjust an impedance value of the bias impedance component in response to the control signal.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: November 2, 2021
    Assignee: Skyworks Solutions, Inc.
    Inventor: Philip John Lehtola
  • Patent number: 11159130
    Abstract: Various methods and circuital arrangements for protection of an RF amplifier are presented. According to one aspect, the RF amplifier is part of switchable RF paths that include at least one path with one or more attenuators that can be used during normal operation to define different modes of operation of the at least one path. An RF level detector monitors a level of an RF signal during operation of any one of the switchable RF paths and forces the RF signal through the at least one path with one or more attenuators while controlling the attenuators to provide an attenuation of the RF signal according to a desired level of protection at an input and/or output of the RF amplifier.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: October 26, 2021
    Assignee: pSemi Corporation
    Inventors: Parvez Daruwalla, Joseph Porter Slaton
  • Patent number: 11152907
    Abstract: An LNA having a plurality of paths, each of which can be controlled independently to achieve a gain mode. Each path includes at least an input FET and an output FET coupled in series. A gate of the output FET is controlled to set the gain of the LNA. Signals to be amplified are applied to the gate of the input FET. Additional stacked FETs are provided in series between the input FET and the output FET.
    Type: Grant
    Filed: April 28, 2020
    Date of Patent: October 19, 2021
    Assignee: pSemi Corporation
    Inventors: Emre Ayranci, Miles Sanner
  • Patent number: 11152899
    Abstract: A multi-stage amplifier including a pre-driver stage, and method of operating the same. In one example, the amplifier includes an output stage with a first output transistor coupled to an oppositely doped second output transistor and to an output terminal. The pre-driver stage includes with a first driver transistor coupled to the first output transistor, and a second driver transistor coupled to the second output transistor. The pre-driver stage also includes a first current mirror and a second current mirror coupled to the first driver transistor and the second driver transistor. The pre-driver stage also includes a first translinear loop having a first translinear loop transistor and a second translinear loop having a second translinear loop transistor coupled to the first output transistor and the second output transistor.
    Type: Grant
    Filed: October 15, 2019
    Date of Patent: October 19, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Ravpreet Singh
  • Patent number: 11146221
    Abstract: The invention relates to a method for protecting a component (6) within an audio device (4) from the exceedance of a maximum internal temperature (TI), wherein a power loss (V) of the component (6) is determined, a measurement temperature (TM) is measured on the component (6), a temperature difference (DT) for the component (6) between the measurement temperature (TM) on the component and the internal temperature (TI) is determined from the power loss (V) by means of a thermal model (14) of the component (6), the internal temperature (TI) is determined as the sum of the measurement temperature (TM) and the temperature difference (DT), a permissible maximum value (VM) for the power loss (V) is determined on the basis of the internal temperature (TM) and known component data (16) of the component (6), and the component (6) is operated in a normal operating mode (N) if the power loss (V) does not exceed the maximum value (VM) or the component (6) is otherwise operated in reduced-power economy operating mode (S)
    Type: Grant
    Filed: April 11, 2018
    Date of Patent: October 12, 2021
    Assignee: Robert Bosch GmbH
    Inventors: Fabian Hoffmeister, Gregor Sauer, Josef Plager, Patrick Engl, Thomas Stein