Patents Examined by Hua Qi
  • Patent number: 10167573
    Abstract: A method of producing a SiC single crystal includes: disposing a SiC seed crystal at a bottom part inside a graphite crucible; causing a solution containing Si, C and R (R is at least one selected from the rare earth elements inclusive of Sc and Y) or X (X is at least one selected from the group consisting of Al, Ge, Sn, and transition metals exclusive of Sc and Y) to be present in the crucible; supercooling the solution so as to cause the SiC single crystal to grow on the seed crystal; and adding powdery or granular Si and/or SiC raw material to the solution from above the graphite crucible while keeping the growth of the SiC single crystal.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: January 1, 2019
    Assignee: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Tadao Nomura, Norio Yamagata, Takehisa Minowa
  • Patent number: 10145024
    Abstract: The present disclosure relates to an apparatus for growing an ingot from silicon melt contained in a crucible by using a seed crystal, the apparatus comprising a chamber including a lower portion for accommodating the crucible and an upper portion through which the growing ingot passes, and a cooling rate control unit which is disposed at the upper portion of the chamber to extend to the lower portion of the chamber and has a hole through which the growing ingot passes, wherein the cooling rate control unit comprises an insulation part for insulating the ingot, a cooling part disposed over the insulation part to cool the ingot, and a blocking part disposed between the insulation part and the cooling part to prevent heat exchange therebetween.
    Type: Grant
    Filed: August 6, 2014
    Date of Patent: December 4, 2018
    Assignee: SK SILTRON CO., LTD.
    Inventors: Won-Ju Lee, Su-In Jeon
  • Patent number: 10103288
    Abstract: Apparatus and method for control of epitaxial growth parameters, for example during manufacture of light emitting diodes (LEDs). Embodiments include PL measurement of a group III-V film following growth while a substrate at an elevated temperature is in a transfer chamber of a multi-chamber cluster tool. In other embodiments, a film thickness measurement, a contactless resistivity measurement, and a particle and/or roughness measure is performed while the substrate is disposed in the transfer chamber. One or more of the measurements performed in the transfer chamber are temperature corrected to room temperature by estimating the elevated temperature based on emission from a GaN base layer disposed below the group III-V film. In other embodiments, temperature correction is based on an absorbance band edge of the GaN base layer determined from collected white light reflectance spectra. Temperature corrected metrology is then used to control growth processes.
    Type: Grant
    Filed: May 29, 2015
    Date of Patent: October 16, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: David P. Bour, Alain Duboust, Alexey Goder
  • Patent number: 10094041
    Abstract: A SiC single crystal having high crystallinity and a large diameter is provided. A SiC single crystal comprising a seed crystal with a c-plane and a non-c-plane, and a c-plane growth portion and an enlarged diameter portion that have grown from the c-plane and the non-c-plane of the seed crystal as origins in the direction of the c-plane and the direction of the non-c-plane, wherein a continuous region free of threading dislocations is present in a peripheral portion of a plane that is parallel to the c-plane of the seed crystal, and contains the seed crystal and the enlarged diameter portion, wherein the area of the continuous region occupies 50% or more of the total area of the plane.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: October 9, 2018
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Katsunori Danno
  • Patent number: 10072354
    Abstract: Embodiments described herein relate to a lower side wall for use in a processing chamber. In one embodiment, the lower side wall includes an annular body. The annular body as an inner circumference, an outer circumference, a plurality of flanges projecting from the inner circumference, and a first concave portion formed in the outer circumference. The outer circumference has a plurality of grooves arranged in a circumferential direction of the lower side wall. In another embodiment, the annular body further includes a top surface having a mounting surface formed thereon and a second concave portion formed opposite the first concave portion. The second concave portion has a plurality of purge holes. In another embodiment, each groove of the plurality of grooves formed in the first concave portion has an arc shape.
    Type: Grant
    Filed: March 25, 2015
    Date of Patent: September 11, 2018
    Assignee: Applied Materials, Inc.
    Inventors: Akira Okabe, Yoshinobu Mori
  • Patent number: 10066317
    Abstract: A method for manufacturing a single crystal diamond in which vapor phase synthetic single crystal diamond is additionally deposited on a single crystal diamond seed substrate obtained by vapor phase synthesis, includes a step of measuring flatness of the seed substrate, a step of determining whether or not to flatten the seed substrate based on the measurement result of the flatness, and any one of the following two steps of a step of additionally depositing the vapor phase synthetic single crystal diamond after flattening the seed substrate for which the flattening is necessary based on the determination and a step of additionally depositing the vapor phase synthetic single crystal diamond without flattening the seed substrate for which the flattening is not necessary based on the determination.
    Type: Grant
    Filed: September 17, 2014
    Date of Patent: September 4, 2018
    Assignees: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY, SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Hitoshi Noguchi, Daisuke Takeuchi, Satoshi Yamasaki, Masahiko Ogura, Hiromitsu Kato, Toshiharu Makino, Hideyo Okushi
  • Patent number: 10060046
    Abstract: A crystal puller for growing a crystal ingot includes a housing, insulation, a crucible assembly, a heat shield, and a dust barrier. The housing encloses a growth chamber, and has an upper wall with an inner surface and an aperture. The insulation separates an inside of the housing into an upper area and a lower area, and has a central opening. The crucible assembly is within the lower area to contain the melt. The heat shield is adjacent the central opening of the insulation, and forms a labyrinth gas path with the crucible assembly. The dust barrier extends from the inner surface of the upper wall to one of the insulation and the heat shield, and forms a seal with the upper wall around the aperture to inhibit particles from entering the growth chamber through the upper area of the housing.
    Type: Grant
    Filed: September 18, 2015
    Date of Patent: August 28, 2018
    Assignee: Corner Star Limited
    Inventors: Steven Lawrence Kimbel, Benjamin Michael Meyer, Salvador Zepeda, Steven John Ferguson
  • Patent number: 10011920
    Abstract: An epitaxy method includes providing an exposed crystalline region of a substrate material. Silicon is epitaxially deposited on the substrate material in a low temperature process wherein a deposition temperature is less than 500 degrees Celsius. A source gas is diluted with a dilution gas with a gas ratio of dilution gas to source gas of less than 1000.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: July 3, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bahman Hekmatshoar-Tabari, Ali Khakifirooz, Alexander Reznicek, Devendra K. Sadana, Ghavam G. Shahidi, Davood Shahrjerdi
  • Patent number: 10000384
    Abstract: A method of forming single and few layer graphene on a quartz substrate in one embodiment includes providing a quartz substrate, melting a portion of the quartz substrate, diffusing a form of carbon into the melted portion to form a carbon and quartz mixture, and precipitating at least one graphene layer out of the carbon and quartz mixture.
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: June 19, 2018
    Assignee: Purdue Research Foundation
    Inventors: Xianfan Xu, Dapeng Wei, Peide Ye
  • Patent number: 9994970
    Abstract: A method of producing a synthetic diamond is disclosed, the method comprising: (a) capturing carbon dioxide from the atmosphere; (b) conducting electrolysis of water to provide hydrogen; (c) reacting the carbon dioxide obtained from step (a) with the hydrogen obtained from step (b) to produce methane; and (d) using the hydrogen obtained from step (b) and the methane obtained from step (c) to produce a synthetic diamond by chemical vapor deposition (CVD).
    Type: Grant
    Filed: February 4, 2016
    Date of Patent: June 12, 2018
    Assignee: ECOTRICITY GROUP LIMITED
    Inventor: Dale Vince
  • Patent number: 9994936
    Abstract: Embodiments described herein provide processes for forming and removing epitaxial films and materials from growth wafers by epitaxial lift off (ELO) processes. In some embodiments, the growth wafer has edge surfaces with an off-axis orientation which is utilized during the ELO process. The off-axis orientation of the edge surface provides an additional variable for controlling the etch rate during the ELO process- and therefore the etch front may be modulated to prevent the formation of high stress points which reduces or prevents stressing and cracking the epitaxial film stack. In one embodiment, the growth wafer is rectangular and has an edge surface with an off-axis orientation rotated by an angle greater than 0° and up to 90° relative to an edge orientation of <110> at 0°.
    Type: Grant
    Filed: August 15, 2011
    Date of Patent: June 12, 2018
    Assignee: Alta Devices, Inc.
    Inventors: Thomas Gmitter, Gang He, Melissa Archer, Siew Neo
  • Patent number: 9988741
    Abstract: Provided is a sapphire single crystal heat treatment method comprising the steps of: charging a sapphire single crystal into a chamber; raising the temperature in the chamber to a target temperature by heating the chamber; holding the temperature in the chamber at a constant temperature; and cooling the inside of the chamber to room temperature, wherein the temperature raising step comprises: a first temperature raising step of raising the temperature to a first set temperature at a temperature raising rate of 4° C./min to 5° C./min; and a second temperature raising step of raising the temperature to a second set temperature at a temperature raising rate of 1° C./min or less after the first temperature raising step has been completed. The temperature raising process is executed in a multi-stage, to reduce the temperature raising time and prevent a sapphire single crystal from being affected by heat.
    Type: Grant
    Filed: September 10, 2013
    Date of Patent: June 5, 2018
    Assignee: SAPPHIRE TECHNOLOGY CO., LTD.
    Inventors: Hee Choon Lee, Yi Sik Choi, Sung Hwan Moon, Gye Won Jang, Bok Kee Na
  • Patent number: 9985102
    Abstract: The present invention discloses methods to create higher quality group III-nitride wafers that then generate improvements in the crystalline properties of ingots produced by ammonothermal growth from an initial defective seed. By obtaining future seeds from carefully chosen regions of an ingot produced on a bowed seed crystal, future ingot crystalline properties can be improved. Specifically the future seeds are optimized if chosen from an area of relieved stress on a cracked ingot or from a carefully chosen N-polar compressed area. When the seeds are sliced out, miscut of 3-10° helps to improve structural quality of successive growth. Additionally a method is proposed to improve crystal quality by using the ammonothermal method to produce a series of ingots, each using a specifically oriented seed from the previous ingot. When employed, these methods enhance the quality of Group III nitride wafers and thus improve the efficiency of any subsequent device.
    Type: Grant
    Filed: February 27, 2014
    Date of Patent: May 29, 2018
    Assignee: SixPoint Materials, Inc.
    Inventors: Edward Letts, Tadao Hashimoto, Masanori Ikari
  • Patent number: 9976228
    Abstract: [Problem] To provide a method for producing a colloidal crystal, wherein the method is easily controlled and is capable of dealing with a wide range of types of colloidal particle. [Solution] The method for producing a colloidal crystal in the present invention is characterized by comprising a preparation step of preparing a colloidal dispersion liquid, in which colloidal particles are dispersed in a liquid comprising an ionic surfactant and a colloidal crystal can be formed due to temperature changes, and a crystallization step of formation of a colloidal crystal by changing the temperature of the colloidal dispersion liquid from a temperature region in which the colloidal crystal is not formed to a temperature region in which the colloidal crystal is formed.
    Type: Grant
    Filed: March 3, 2012
    Date of Patent: May 22, 2018
    Assignees: PUBLIC UNIVERSITY CORPORATION NAGOYA CITY UNIVERSITY, FUJI CHEMICAL CO., LTD.
    Inventors: Junpei Yamanaka, Akiko Toyotama, Masaaki Yamamoto, Sachiko Onda, Tohru Okuzono, Fumio Uchida
  • Patent number: 9970125
    Abstract: An apparatus for growing a crystalline sheet from a melt includes a cold block assembly. The cold block assembly may include a cold block and a shield surrounding the cold block and being at an elevated temperature with respect to that of the cold block, the shield defining an opening disposed along a surface of the cold block proximate a melt surface that defines a cold area comprising a width along a first direction of the cold block, the cold area operable to provide localized cooling of a region of the melt surface proximate the cold block. The apparatus may further include a crystal puller arranged to draw a crystalline seed in a direction perpendicular to the first direction when the cold block assembly is disposed proximate the melt surface.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: May 15, 2018
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Brian H. Mackintosh, Peter L. Kellerman, Dawei Sun
  • Patent number: 9816198
    Abstract: The present invention provides a method capable of stably producing a zinc oxide single crystal in which a large amount of dopant forms a solid solution at a high level of productivity and reproducibility without using a harmful substance. The method of the present invention comprises providing a raw material powder that is mainly composed of zinc oxide, comprises at least one dopant element selected from B, Al, Ga, In, C, F, Cl, Br, I, H, Li, Na, K, N, P, As, Cu, and Ag in a total amount of 0.01 to 1 at %, and is substantially free of a crystal phase other than zinc oxide, and injecting the raw material powder to form a film mainly composed of zinc oxide on a seed substrate comprising a zinc oxide single crystal and also to crystallize the formed film in a solid phase state.
    Type: Grant
    Filed: August 7, 2014
    Date of Patent: November 14, 2017
    Assignee: NGK Insulators, Ltd.
    Inventors: Jun Yoshikawa, Katsuhiro Imai
  • Patent number: 9803292
    Abstract: Methods for growing microstructured and nanostructured graphene by growing the microstructured and nanostructured graphene from the bottom-up directly in the desired pattern are provided. The graphene structures can be grown via chemical vapor deposition (CVD) on substrates that are partially covered by a patterned graphene growth barrier which guides the growth of the graphene.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: October 31, 2017
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Michael S. Arnold, Padma Gopalan, Nathaniel S. Safron, Myungwoong Kim
  • Patent number: 9797065
    Abstract: A crystal can be formed using vapor deposition. In one set of embodiments, the crystal can be grown such that the crystal selectively grown along a particular surface at a relatively faster rate as compared to another surface. In another embodiment, the assist material may aid in transporting or depositing the vapor species of a constituent to surfaces of the crystal. In a further set of embodiments, the crystal can be vapor grown in the presence of an assist material that is attracted to or repelled from a particular location of the crystal to increase or reduce crystal growth rate at a region adjacent to the location. The position of the relatively locally greater net charge within the assist material may affect the crystal plane to which the assist material is attracted or repelled. An as-grown crystal may be achieved that has a predetermined geometric shape.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: October 24, 2017
    Inventors: Elsa Ariesanti, Douglas S. McGregor
  • Patent number: 9797066
    Abstract: A susceptor is disclosed that can increase a heat capacity of a susceptor outer peripheral portion by enlarging the thickness of the susceptor and equalize thermal conditions for an outer peripheral portion and the inner peripheral portion of a wafer and a method for manufacturing an epitaxial wafer that uses this susceptor to perform vapor-phase epitaxy of an epitaxial layer. Back surface depositions have a close relationship with heat transfer that occurs between a wafer and a susceptor, i.e., a wafer outer peripheral portion has a higher temperature than a wafer inner peripheral portion since the wafer is in contact with or close to the susceptor at the wafer outer peripheral portion and hence the back surface depositions are apt to be generated. This is solved by equalizing thermal conditions for the wafer outer peripheral portion and the inner peripheral portion of the wafer back surface.
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: October 24, 2017
    Assignee: SHIN-ETSU HANDOTAI CO., LTD.
    Inventor: Masato Ohnishi
  • Patent number: 9773666
    Abstract: Described herein is a method for growing indium nitride (InN) materials by growing hexagonal and/or cubic InN using a pulsed growth method at a temperature lower than 300° C. Also described is a material comprising InN in a face-centered cubic lattice crystalline structure having an NaCl type phase.
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: September 26, 2017
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Neeraj Nepal, Charles R. Eddy, Jr., Nadeemmullah A. Mahadik, Syed B Qadri, Michael J. Mehl