Patents Examined by Hung Vu
  • Patent number: 8896026
    Abstract: Provided is a nitride semiconductor device including: a nitride semiconductor layer over a substrate wherein the nitride semiconductor has a two-dimensional electron gas (2DEG) channel inside; a drain electrode in ohmic contact with the nitride semiconductor layer; a source electrode in Schottky contact with the nitride semiconductor layer wherein the source electrode is spaced apart from the drain electrode; a dielectric layer formed on the nitride semiconductor layer between the drain electrode and the source electrode and on at least a portion of the source electrode; and a gate electrode disposed on the dielectric layer to be spaced apart from the drain electrode, wherein a portion of the gate electrode is formed over a drain-side edge portion of the source electrode with the dielectric layer interposed therebetween, and a manufacturing method thereof.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: November 25, 2014
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Woo Chul Jeon, Ki Yeol Park, Young Hwan Park
  • Patent number: 8895427
    Abstract: A zinc oxide transparent electroconductive oxide has been difficult to use as a substrate having a transparent electrode because the oxide, when configured as a thin film, because of increased resistivity due to air and/or moisture exposure. Though doping can inhibit increase of resistance to some extent, there has been difficulty in selecting a type and an amount of a doping substance and because doping causes high initial resistance. A substrate having a transparent electrode with stable resistivity against various environments is produced by a magnetron sputtering method using a target composed of a zinc oxide transparent electroconductive oxide containing 0.50 to 2.75% silicon dioxide by weight relative to the oxide.
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: November 25, 2014
    Assignee: Kaneka Corporation
    Inventors: Takashi Kuchiyama, Kenji Yamamoto
  • Patent number: 8890256
    Abstract: The invention relates to a design structure, and more particularly, to a design structure for a heavy ion tolerant device, method of manufacturing the same and a structure thereof. The structure includes a first device having a diffusion comprising a drain region and source region and a second device having a diffusion comprising a drain region and source region. The first and second device are aligned in an end-to-end layout along a width of the diffusion of the first device and the second device. A first isolation region separating the diffusion of the first device and the second device.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: November 18, 2014
    Assignee: International Business Machines Corporation
    Inventors: Mark C. Hakey, Tak H. Ning, Philip J. Oldiges, Henry H. K. Tang
  • Patent number: 8883629
    Abstract: A method of placing a dummy fill layer on a substrate is disclosed (FIG. 2). The method includes identifying a sub-region of the substrate (210). A density of a layer in the sub-region is determined (212). A pattern of the dummy fill layer is selected to produce a predetermined density (216). The selected pattern is placed in the sub-region (208).
    Type: Grant
    Filed: September 16, 2010
    Date of Patent: November 11, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Scott R. Summerfelt, Robert G. Fleck
  • Patent number: 8872161
    Abstract: The present disclosure provides an integrated circuit (IC). The IC includes a substrate having a metal-oxide-semiconductor (MOS) region. The IC further includes first gate, source and drain regions, having a first length, and second gate, source and drain regions, having a second length. A first nanowire set is disposed in the first gate region, the first nanowire set including a nanowire having a first diameter and connecting to a feature in the first source region and a feature in the first drain region. A second nanowire set is disposed in the second gate region, the second nanowire set including a nanowire having a second diameter and connecting to a feature in the second source region and a feature in the second drain region. The diameters are such that if the first length is greater than the second length, the first diameter is less than the second diameter, and vice versa.
    Type: Grant
    Filed: August 26, 2013
    Date of Patent: October 28, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Cheng Ching, Jiun-Jia Huang
  • Patent number: 8871636
    Abstract: A line trough and a via cavity are formed within a dielectric layer comprising a fluorosilicate glass (FSG) layer. A fluorine depleted adhesion layer is formed within the line trough and the via cavity either by a plasma treatment that removes fluorine from exposed surfaces of the FSG layer, or by deposition of a substantially fluorine-free dielectric layer. Metal is deposited within the line trough and the via cavity to form a metal line and a metal via. The fluorine depleted adhesion layer provides enhanced adhesion to the metal line compared with prior art structures in which a metal line directly contacts a FSG layer. The enhanced adhesion of metal with an underlying dielectric layer provides higher resistance to delamination for a semiconductor package employing lead-free C4 balls on a metal interconnect structure.
    Type: Grant
    Filed: October 7, 2013
    Date of Patent: October 28, 2014
    Assignee: International Business Machines Corporation
    Inventors: Mukta G. Farooq, Emily R. Kinser
  • Patent number: 8872257
    Abstract: According to one embodiment, a semiconductor device includes: a first region including: a first semiconductor layer; a first semiconductor region; a second semiconductor region; a third semiconductor region having higher impurity concentration than the first semiconductor region; a first electrode; a second electrode; an insulating film; a third electrode; a fourth electrode, a second region including a pad electrode, and the third region including: the first semiconductor layer; the first semiconductor region; a third semiconductor region; the first electrode; the second electrode; and a first insulating layer.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: October 28, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takeru Matsuoka, Yasuhito Saito, Seiichiro Kamiyama
  • Patent number: 8853808
    Abstract: According to one embodiment, a radiation detector includes a substrate, a scintillator layer, a moisture-proof body and an adhesive layer. The substrate is partitioned into at least an active area and a bonding area. The substrate includes a photoelectric conversion element located in the active area and configured to convert fluorescence to an electrical signal, an organic resin protective layer located at an outermost layer in the active area, and an inorganic protective film located at an outermost layer of the bonding area. The scintillator layer is formed on the organic resin protective layer so as to cover the photoelectric conversion element and configured to convert radiation to the fluorescence. The moisture-proof body is formed so as to cover the scintillator layer. The adhesive layer is formed on the inorganic protective film and bonds the moisture-proof body to the substrate.
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: October 7, 2014
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Electron Tubes & Devices Co., Ltd.
    Inventor: Katsuhisa Homma
  • Patent number: 8853671
    Abstract: A nanorod light emitting device and a method of manufacturing the same. The nanorod light emitting device may include at least one nitride semiconductor layer, light emitting nanorods formed on the nitride semiconductor layer and spaced apart from each other, and a first filling layer, a conductive layer, and a second filling layer formed in spaces between the light emitting nanorods.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: October 7, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Nam-Goo Cha, Geon-Wook Yoo, Han-Kyu Seong, Sam-Mook Kang, Hun-Jae Chung
  • Patent number: 8847273
    Abstract: A light emitting diode that includes: a light source; a buffer layer disposed on the light source and including a first matrix polymer; a polymer layer disposed on the buffer layer and including an organic/inorganic hybrid polymer; and an emission layer disposed on the polymer layer and including a light emitting particle dispersed in a second matrix polymer, wherein one selected from the light source, the buffer layer, the emission layer, and a combination thereof includes one selected from sulfurous component, a nitrogenous component, and a combination thereof.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: September 30, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Eun Joo Jang, Shin Ae Jun, Hyun A Kang, Hyo Sook Jang, Soo Kyung Kwon
  • Patent number: 8803151
    Abstract: A semiconductor device (100) includes: a first thin film transistor (105) of a first conductivity type formed on a substrate for each pixel; and a plurality of photosensor sections (200). Each photosensor section (200) includes a photodetecting portion including a thin film diode (202), a capacitor (206) for storing a photocurrent occurring in the thin film diode (202), and a second thin film transistor (204) of the first conductivity type, the photodetecting portion being connected to the capacitor (206) via the second thin film transistor (204); the first and second thin film transistors (105, 204) and the thin film diode (202) have semiconductor layers made of the same semiconductor film; and a characteristic of the first thin film transistor (105) and a characteristic of the second thin film transistor (204) are different.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: August 12, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Nami Okajima, Masahiro Fujiwara
  • Patent number: 8803198
    Abstract: Group III Nitride based field effect transistor (FETs) are provided having a power degradation of less than about 3.0 dB when operated at a drain-to-source voltage (VDS) of about from about 28 to about 70 volts, a gate to source voltage (Vgs) of from about ?3.3 to about ?14 volts and a normal operating temperature for at least about 10 hours.
    Type: Grant
    Filed: May 30, 2012
    Date of Patent: August 12, 2014
    Assignee: Cree, Inc.
    Inventors: Richard Peter Smith, Scott T. Sheppard, Adam William Saxler, Yifeng Wu
  • Patent number: 8796849
    Abstract: A structure comprises a first semiconductor chip with a first metal bump and a second semiconductor chip with a second metal bump. The structure further comprises a solder joint structure electrically connecting the first semiconductor chip and the second semiconductor chip, wherein the solder joint structure comprises an intermetallic compound region between the first metal bump and the second metal bump, wherein the intermetallic compound region is with a first height dimension and a surrounding portion formed along exterior walls of the first metal bump and the second metal bump, wherein the surrounding portion is with a second height dimension, and wherein the second height dimension is greater than the first height dimension.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: August 5, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Jing-Cheng Lin
  • Patent number: 8796825
    Abstract: Highly reliable interconnections for microelectronic packaging. In one embodiment, dielectric layers in a build-up interconnect have a gradation in glass transition temperature; and the later applied dielectric layers are laminated at temperatures lower than the glass transition temperatures of the earlier applied dielectric layers. In one embodiment, the glass transition temperatures of earlier applied dielectric films in a build-up interconnect are increased through a thermosetting process to exceed the temperature for laminating the later applied dielectric films. In one embodiment, a polyimide material is formed with embedded catalysts to promote cross-linking after a film of the polyimide material is laminated (e.g., through photo-chemical or thermal degradation of the encapsulant of the catalysts).
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: August 5, 2014
    Assignee: Intel Corporation
    Inventor: Ravindra V. Tanikella
  • Patent number: 8796824
    Abstract: A semiconductor structure having a first corner includes a carrier, a first protective layer, a second protective layer, and a third protective layer. The carrier comprises a carrier surface having a protection-layered disposing zone. The first protective layer comprises a first surface having a first disposing zone, a first anti-stress zone and a first exposing zone, the first anti-stress zone is located at a corner of the first disposing zone, the second protective layer is disposed at the first disposing zone. The second protective layer comprises a second surface having a second disposing zone, a second anti-stress zone and a second exposing zone, the second anti-stress zone is located at a corner of the second disposing zone. The first anti-stress zone and the second anti-stress zone are located at the first corner. An area of the first anti-stress zone is not smaller than that of the second anti-stress zone.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: August 5, 2014
    Assignee: Chipbond Technology Corporation
    Inventors: Chin-Tang Hsieh, Shyh-Jen Guo, You-Ming Hsu
  • Patent number: 8791538
    Abstract: A light receiving region includes a plurality of light detecting sections 10. The light detecting sections 10 has a second contact electrode 4A. The second contact electrode 4A is arranged at a position overlapping a first contact electrode 3A, so as to contact the first contact electrode. Further, a resistive layer 4B is continued to the second contact electrode 4A.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: July 29, 2014
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Koei Yamamoto, Terumasa Nagano, Kazuhisa Yamamura, Kenichi Sato, Ryutaro Tsuchiya
  • Patent number: 8791006
    Abstract: A semiconductor device has a first insulating layer formed over a first surface of a polymer matrix composite substrate. A first conductive layer is formed over the first insulating layer. A second insulating layer is formed over the first insulating layer and first conductive layer. A second conductive layer is formed over the second insulating layer and first conductive layer. The second conductive layer is wound to exhibit inductive properties. A third conductive layer is formed between the first conductive layer and second conductive layer. A third insulating layer is formed over the second insulating layer and second conductive layer. A bump is formed over the second conductive layer. A fourth insulating layer can be formed over a second surface of the polymer matrix composite substrate. Alternatively, the fourth insulating layer can be formed over the first insulating layer prior to forming the first conductive layer.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: July 29, 2014
    Assignee: STATS ChipPAC, Ltd.
    Inventor: Yaojian Lin
  • Patent number: 8791446
    Abstract: According to one embodiment, a semiconductor device includes a substrate and an interconnect region on the substrate. The interconnect region includes a first interconnect having a first contact portion whose plane shape is a ring-like plane shape, a second interconnect disposed below the first interconnect, and a contact electrode passing through the ling-like portion of the first contact portion and electrically connecting the first interconnect and the second interconnect.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: July 29, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Yutaka Ishibashi
  • Patent number: 8785934
    Abstract: A thin film transistor substrate includes a base substrate, a gate electrode, a gate insulating layer, a surface treating layer, an active layer, a source electrode and a drain electrode. The gate electrode is formed on the base substrate. The gate insulating layer is formed on the base substrate to cover the gate electrode. The surface treating layer is formed on the gate insulating layer by treating the gate insulating layer with a nitrogen-containing gas to prevent leakage current. The active layer is formed on the surface treating layer to cover the gate electrode. The source electrode and the gate electrode that are spaced apart from each other by a predetermined distance are formed on the active layer.
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: July 22, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Sang-Woo Whangbo, Shi-Yul Kim, Sung-Hoon Yang, Woo-Geun Lee
  • Patent number: 8772072
    Abstract: A backside illuminated image sensor includes a light receiving element disposed in a first substrate, an interlayer insulation layer disposed on the first substrate having the light receiving element, an align key spaced apart from the light receiving element and passing through the interlayer insulation layer and the first substrate, a plurality of interconnection layers disposed on the interlayer insulation layer in a multi-layered structure, wherein the backside of the lowermost interconnection layer is connected to the align key, a passivation layer covering the interconnection layers, a pad locally disposed on the backside of the first substrate and connected to the backside of the align key, a light anti-scattering layer disposed on the backside of the substrate having the pad, and a color filter and a microlens disposed on the light anti-scattering layer to face the light receiving element.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: July 8, 2014
    Assignee: Intellectual Ventures II LLC
    Inventor: Sung-Gyu Pyo