Patents Examined by Hung Vu
  • Patent number: 8987747
    Abstract: A semiconductor device of an embodiment includes a semiconductor layer formed of a III-V group nitride semiconductor, a first silicon nitride film formed on the semiconductor layer, a gate electrode formed on the first silicon nitride film, a source electrode and a drain electrode formed on the semiconductor layer such that the gate electrode is interposed between the source electrode and the drain electrode, and a second silicon nitride film formed between the source electrode and the gate electrode and between the drain electrode and the gate electrode and having an oxygen atom density lower than that of the first silicon nitride film.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: March 24, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Miki Yumoto
  • Patent number: 8980658
    Abstract: A light-emitting element includes a n-type silicon oxide film and a p-type silicon nitride film. The n-type silicon oxide film and the p-type silicon nitride film formed on the n-type silicon oxide film form a p-n junction. The n-type silicon oxide film includes a plurality of quantum dots composed of n-type Si while the p-type silicon nitride film includes a plurality of quantum dots composed of p-type Si. Light emission occurs from the boundary between the n-type silicon oxide film and the p-type silicon nitride film by injecting electrons from the n-type silicon oxide film side and holes from the p-type silicon nitride film side.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: March 17, 2015
    Assignee: Hiroshima University
    Inventor: Shin Yokoyama
  • Patent number: 8975103
    Abstract: The present invention relates a CMOS (Complementary Metal Oxide Semiconductor) image sensor capable of improving dynamic range by using an additional driver transistor. The CMOS image sensor according to the present invention has a pixel array which has a plurality of unit pixels each of which includes a photodiode and a fist transistor to act as a source follower buffer amplifier to amplify photogenerated charges accumulated in the photodiode. Also, the CMOS image sensor includes a second transistor for a buffer amplifier to amplify and output a gate input voltage in the unit pixel, wherein an output signal of the first transistor is applied to a gate of the second.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: March 10, 2015
    Assignee: Intellectual Ventures II LLC
    Inventor: Won-Ho Lee
  • Patent number: 8969960
    Abstract: A power semiconductor device includes a second conductive type sense outer-peripheral well formed to surround a plurality of sense wells on the surface of a drift layer, a first conductive type main-cell source region selectively formed on the surface of the main cell well, a first conductive type sense source region selectively formed on the surface of the sense well, a first conductive type capacitor lower electrode region selectively formed on the surface of the sense outer-peripheral well, a gate insulation film formed on the channel regions and on the sense outer-peripheral well, a gate electrode formed on the gate insulation film, and a sense pad electrically connected to the sense well and the sense source region as well as on the sense outer-peripheral well and the capacitor lower electrode region.
    Type: Grant
    Filed: June 7, 2012
    Date of Patent: March 3, 2015
    Assignee: Mitsubishi Electric Corporation
    Inventors: Akihiko Furukawa, Yasuhiro Kagawa, Naruhisa Miura, Masayuki Imaizumi, Kazuyasu Nishikawa
  • Patent number: 8962475
    Abstract: An integrated circuit substrate is designed and fabricated with a selectively applied transmission line reference plane metal layer to achieve signal path shielding and isolation, while avoiding drops in impedance due to capacitance between large diameter vias and the transmission line reference plane metal layer. The transmission line reference plane defines voids above (or below) the signal-bearing plated-through holes (PTHs) that pass through a rigid substrate core, so that the signals are not degraded by an impedance mismatch that would otherwise be caused by shunt capacitance from the top (or bottom) of the signal-bearing PTHs to the transmission line reference plane. For voltage-plane bearing PTHs, no voids are introduced, so that signal path conductors can be routed above or adjacent to the voltage-plane bearing PTHs, with the transmission line reference plane preventing shunt capacitance between the signal path conductors and the PTHs.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: February 24, 2015
    Assignee: International Business Machines Corporation
    Inventors: Sungjun Chun, Anand Haridass, Roger D. Weekly
  • Patent number: 8962372
    Abstract: A photoelectric conversion device comprises a high-refractive-index portion at a position close to a photoelectric conversion element therein. And, the high-refractive-index portion has first and second horizontal cross-section surfaces. The first cross-section surface is at a position closer to the photoelectric conversion element rather than the second cross-section surface, and is larger than an area of the second cross-section surface, so as to guide an incident light into the photoelectric conversion element without reflection.
    Type: Grant
    Filed: March 25, 2014
    Date of Patent: February 24, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventor: Masatsugu Itahashi
  • Patent number: 8963255
    Abstract: A semiconductor is formed on a (110) silicon (Si) substrate, with improved electron mobility. Embodiments include semiconductor devices having a silicon carbide (SiC) portion in the nFET channel region. An embodiment includes forming an nFET channel region and a pFET channel region in a Si substrate, such as a (110) Si substrate, and forming a silicon carbide (SiC) portion on the nFET channel region. The SiC portion may be formed by ion implantation of C followed by a recrystallization anneal or by epitaxial growth of SiC in a recess formed in the substrate. The use of SiC in the nFET channel region improves electron mobility without introducing topographical differences between NMOS and PMOS transistors.
    Type: Grant
    Filed: March 19, 2014
    Date of Patent: February 24, 2015
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Jeremy A. Wahl, Kingsuk Maitra
  • Patent number: 8963342
    Abstract: Structures, architectures, systems, an integrated circuit, methods and software for configuring an integrated circuit for multiple packaging types and/or selecting one of a plurality of packaging types for an integrated circuit. The structure generally comprises a bump pad, a plurality of bond pads configured for independent electrical connection to the bump pad, and a plurality of conductive traces, each adapted to electrically connect one of the bond pads to the bump pad. The method of configuring generally includes the steps of forming the bump pad, the bond pads, and the conductive traces from an uppermost metal layer, and forming an insulation layer thereover. The method of selecting generally comprises the uppermost metal layer-forming step, and forming either (i) a wire bond to at least one of the bond pads, or (ii) a bumping metal configured to electrically connect at least one of the bond pads to the bump pad.
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: February 24, 2015
    Assignee: Marvell International Ltd.
    Inventors: Tyson Leistiko, Huahung Kao
  • Patent number: 8956913
    Abstract: A semiconductor device having favorable electric characteristics and a manufacturing method thereof are provided. A transistor includes an oxide semiconductor layer formed over an insulating layer, a source electrode layer and a drain electrode layer which overlap with part of the oxide semiconductor layer, a gate insulating layer in contact with part of the oxide semiconductor layer, and a gate electrode layer over the gate insulating layer. In the transistor, a buffer layer having n-type conductivity is formed between the source electrode layer and the oxide semiconductor layer and between the drain electrode layer and the oxide semiconductor layer. Thus, parasitic resistance is reduced, resulting in improvement of on-state characteristics of the transistor.
    Type: Grant
    Filed: June 19, 2014
    Date of Patent: February 17, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 8957486
    Abstract: Provided is a magnetic random access memory to which spin torque magnetization reversal is applied, the magnetic random access memory being thermal stable in a reading operation and also being capable of reducing a current in a wiring operation. A magnetoresistive effect element formed by sequentially stacking a fixed layer, a nonmagnetic barrier layer, and a recording layer is used as a memory element. The recording layer adopts a laminated ferrimagnetic structure.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: February 17, 2015
    Assignee: Hitachi, Ltd.
    Inventors: Kenchi Ito, Jun Hayakawa, Katsuya Miura, Hiroyuki Yamamoto
  • Patent number: 8951910
    Abstract: A method and apparatus for providing a conductive structure adjacent to a damascene conductive structure in a semiconductor device structure. The semiconductor device structure includes an insulation layer with at least one damascene conductive structure formed therein, wherein the at least one damascene conductive structure includes an insulative, protective layer disposed thereon. The insulative material of the protective layer is able to resist removal by at least some suitable etchants for the insulative material of the insulation layer adjacent to the at least one damascene conductive structure. A self-aligned opening is formed by removing a portion of an insulation layer adjacent the at least one damascene conductive structure. The self-aligned opening is then filled with a conductive material to thereby provide another conductive structure adjacent to the at least one damascene conductive structure.
    Type: Grant
    Filed: June 11, 2013
    Date of Patent: February 10, 2015
    Assignee: Micron Technology, Inc.
    Inventor: Howard E. Rhodes
  • Patent number: 8952380
    Abstract: To suppress a decrease in on-state current in a semiconductor device including an oxide semiconductor. A semiconductor device includes an insulating film containing silicon, an oxide semiconductor film over the insulating film, a gate insulating film containing silicon over the oxide semiconductor film, a gate electrode which is over the gate insulating film and overlaps with at least the oxide semiconductor film, and a source electrode and a drain electrode which are electrically connected to the oxide semiconductor film. In the semiconductor device, the oxide semiconductor film which overlaps with at least the gate electrode includes a region in which a concentration of silicon distributed from an interface with the insulating film is lower than or equal to 1.1 at. %. In addition, a concentration of silicon contained in a remaining portion of the oxide semiconductor film except the region is lower than the concentration of silicon contained in the region.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: February 10, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Tatsuya Honda, Masashi Tsubuku, Yusuke Nonaka, Takashi Shimazu
  • Patent number: 8946889
    Abstract: A semiconductor module is provided which includes a semiconductor unit which is made by a resin mold. The resin mold has formed therein a coolant path through which a coolant flows to cool a semiconductor chip embedded in the resin mold. The resin mold also includes heat spreaders, and electric terminals embedded therein. Each of the heat spreaders has a fin heat sink exposed to the flow of the coolant. The fin heat sink is welded to a surface of each of the heat spreaders through an insulator, thus minimizing an electrical leakage from the heat spreader to the coolant.
    Type: Grant
    Filed: November 4, 2013
    Date of Patent: February 3, 2015
    Assignee: Denso Corporation
    Inventors: Chikage Katou, Hiroaki Arai, Yoshiyuki Yamauchi, Yasuou Yamazaki, Naoki Sugimoto, Yasuyuki Sakai
  • Patent number: 8946833
    Abstract: A pressure sensor includes a first housing having a cavity. The pressure sensor further includes a pressure sensing device attached to a bottom of the cavity. The pressure sensor further includes a layer of gel over the pressure sensing device. The pressure sensor further includes a baffle in contact with the gel to reduce movement of the gel.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: February 3, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Leo M. Higgins, III
  • Patent number: 8933469
    Abstract: The present invention relates to a high-voltage light-emitting device suitable for light-emitting diode chip array module. The device comprises a set of light emitting diode chips, about 18˜25 chips, deposited on a substrate by using a non-matrix arrangement. Through the adjustments, the high-voltage light-emitting device of the present invention has optimized luminous efficiency.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: January 13, 2015
    Assignee: Formosa Epitaxy Incorporation
    Inventors: Hui-Ching Feng, Chen-Hong Lee, Wei-Kang Cheng, Shyi-Ming Pan
  • Patent number: 8921892
    Abstract: A method of forming a transistor over a nitride semiconductor layer includes surface-treating a first region of a nitride semiconductor layer and forming a gate over the first region. Surface-treating the first region can cause the transistor to have a higher intrinsic small signal transconductance than a similar transistor formed without the surface treatment. A portion of the bottom of the gate can be selectively etched. A resulting transistor can include a nitride semiconductor layer having a surface-treated region and a gate formed over or adjacent to the surface-treated region.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: December 30, 2014
    Assignee: Massachusetts Institute of Technology
    Inventors: Tomas Apostol Palacios, Jinwook Chung
  • Patent number: 8916413
    Abstract: The present invention discloses a phase change memory and a manufacturing method thereof. The phase change memory according to the present invention uses top electrodes provided on the top of storage nodes to heat the storage nodes such that a phase change layer in the storage nodes undergoes a phase change. In the phase change memory of embodiments of the present invention, the contact area between the top electrode and the storage node is relatively small, which is good for phase change. Moreover, each column of storage nodes is connected by the same linear top electrode, which can improve photo alignment shift margin.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: December 23, 2014
    Assignees: Semiconductor Manufacturing International (Shanghai) Corporation, Semiconductor Manufacturing International (Beijing) Corporation
    Inventors: Minda Hu, James Hong
  • Patent number: 8916919
    Abstract: A metal capacitor structure includes a plurality of line level structures vertically interconnected with via level structures. Each first line level structure and each second line level structure includes a set of parallel metal lines that is physically joined at an end to a rectangular tab structure having a rectangular horizontal cross-sectional area. A first set of parallel metal lines within a first line level structure and a second set of parallel metal lines within a second line level structure are interdigitated and parallel to each other, and can collectively form an interdigitated uniform pitch structure. Because the rectangular tab structures do not protrude toward each other within a region between two facing sidewalls of the rectangular tab structures, sub-resolution assist features (SRAFs) can be employed to provide a uniform width and a uniform pitch throughout the entirety of the interdigitated uniform pitch structure.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: December 23, 2014
    Assignee: International Business Machines Corporation
    Inventors: Eric Thompson, Roger A. Booth, Jr., Ning Lu, Christopher S. Putnam
  • Patent number: 8912666
    Abstract: A Chip Scale Package (CSP) and a method of forming the same are disclosed. Single chips without the conventional ball mountings, are first attached to an adhesive-substrate (adsubstrate) composite having openings that correspond to the input/output (I/O) pads on the single chips to form a composite chip package. Ball mounting is then performed over the openings, thus connecting the I/O pads at the chip sites to the next level of packaging directly. In another embodiment, the adhesive layer is formed on the wafer side first to form an adwafer, which is then die sawed in CSPs. Then the CSPs with the adhesive already on them are bonded to a substrate. The composite chip package may optionally be encapsulated with a molding material. The CSPs provide integrated and shorter chip connections especially suited for high frequency circuit applications, and can leverage the currently existing test infrastructure.
    Type: Grant
    Filed: March 29, 2013
    Date of Patent: December 16, 2014
    Assignee: Qualcomm Incorporated
    Inventors: Jin-Yuan Lee, Ching-Cheng Huang, Mou-Shiung Lin
  • Patent number: 8901742
    Abstract: According to an exemplary embodiment, a monolithic power converter package includes a monolithic die over a substrate, the monolithic die integrating a driver integrated circuit (IC) with a control power transistor and a sync power transistor connected in a half-bridge. The high side power input and a power output of the half-bridge each are disposed on a top surface of the monolithic die. The high side power input is electrically coupled to the substrate through a high side power connection. The power output is electrically coupled to the substrate through a power output connection. The low side power input of the half-bridge comprises a plurality of through substrate vias that extend through the monolithic die to electrically connect a low side power pad to the monolithic die.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: December 2, 2014
    Assignee: International Rectifier Corporation
    Inventors: Eung San Cho, Dean Fernando, Tim Philips, Dan Clavette