Patents Examined by Iyabo S. Alli
  • Patent number: 8654326
    Abstract: Apparatus for performing Raman spectroscopy may include a first laser source having a first emission wavelength and a second laser source having a second emission wavelength. A separation between the first and second emission wavelengths may correspond to a width of a Raman band of a substance of interest. A switch may provide switching between the first and second laser sources. An ensemble of individually addressable laser emitters may be provided. A Bragg grating element may receive laser light from the ensemble. An optical system may direct light from the Bragg grating element into an optical fiber. A combined beam through the optical fiber may contain light from each of the emitters.
    Type: Grant
    Filed: August 29, 2013
    Date of Patent: February 18, 2014
    Assignee: PD-LD, Inc.
    Inventors: Boris Leonidovich Volodin, Vladimir Sinisa Ban
  • Patent number: 8634075
    Abstract: The invention encompasses analyzers and analyzer systems that include a single molecule analyzer, methods of using the analyzer and analyzer systems to analyze samples, either for single molecules or for molecular complexes. The single molecule uses electromagnetic radiation that is translated through the sample to detect the presence or absence of a single molecule. The single molecule analyzer provided herein is useful for diagnostics because the analyzer detects single molecules with zero carryover between samples.
    Type: Grant
    Filed: March 9, 2013
    Date of Patent: January 21, 2014
    Assignee: Singulex, Inc.
    Inventor: Richard Livingston
  • Patent number: 8634068
    Abstract: Methods for inspecting ophthalmic lenses with different wavelengths of radiation are disclosed herein.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: January 21, 2014
    Assignee: Johnson & Johnson Vision Care, Inc.
    Inventors: Peter W. Sites, Russell J. Edwards, Kenneth L. Cagle
  • Patent number: 8599382
    Abstract: The present invention provides methods and apparatuses for in situ chemical analysis of liquid sample for the collection, identification, and measurement of chemical moieties, such as, biotoxins, organic compounds, or chemical contaminants, in aquatic environments. The apparatuses of the present invention relate to an automated in situ sampler for chemical stressors that adversely impact biological systems in aquatic environments. The apparatuses of the present invention are designed as a means to automatically collect liquid (e.g., water) samples and analyze them for the presence of chemical moieties. The apparatuses of the present invention are designed to automatically collect multiple liquid samples, extract and separate chemical moieties contained within the samples, and analyze the chemical moieties to determine the composition and concentration of the chemical moieties over time and space.
    Type: Grant
    Filed: October 19, 2011
    Date of Patent: December 3, 2013
    Assignee: Mote Marine Laboratory
    Inventors: Richard H. Pierce, Jr., Gary J. Kirkpatrick, Alan R. Hails, Michael S. Henry
  • Patent number: 8599388
    Abstract: Methods and computer program products for super-resolution mapping of nanoprobes having spectrally distinguishable coherent scattering properties. A sample containing a plurality of nanoprobes is illuminated with broadband light, and coherent scattering by the nanoprobes is detected. Scattered light is spectrally associated with respective nanoprobes, allowing a position associated with each nanoprobe to be mapped.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: December 3, 2013
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Thpomas van Dijk, David Mayerich, Rohit Bhargava, Paul Scott Carney
  • Patent number: 8598556
    Abstract: A substrate positioning device includes: a supporting unit for supporting a substrate in place; a light emitting unit and a light receiving unit respectively arranged at major surface sides of the substrate to face each other; a light emission control unit configured to control a light emission quantity of the light emitting unit pursuant to a control value; and a detecting unit for detecting a light reception quantity received by the light receiving unit. The substrate positioning device further includes an adjusting unit for controlling the control value pursuant to the light reception quantity while the substrate is not supported by the supporting unit.
    Type: Grant
    Filed: November 7, 2012
    Date of Patent: December 3, 2013
    Assignee: Kabushiki Kaisha Yaskawa Denki
    Inventor: Shinichi Katsuda
  • Patent number: 8593632
    Abstract: A drive system drives a movable body, based on measurement results of a first measurement system which measures the position of the movable body in an XY plane by irradiating a measurement beam from an arm member on a grating placed on a surface parallel to the XY plane of the movable body and measurement results of a second measurement system which measures a variance of the arm member using a laser interferometer. In this case, the drive system corrects measurement errors caused due to a variance of the arm member included in the measurement results of the first measurement system, using the measurement results of the second measurement system.
    Type: Grant
    Filed: July 1, 2013
    Date of Patent: November 26, 2013
    Assignee: Nikon Corporation
    Inventor: Yuichi Shibazaki
  • Patent number: 8582106
    Abstract: An automatic optical measurement system (100) is provided. The measurement system (100) includes a sample vial (10) and an automatic optical measurement apparatus (90) configured to receive the sample vial (10). The automatic optical measurement apparatus (90) is configured to detect a presence of the sample vial (10) in the automatic optical measurement apparatus (90) and measure a light intensity of light substantially passing through the sample vial (10) if the sample vial (10) is present. The measured light intensity is related to sample material properties of a sample material within the sample vial (10).
    Type: Grant
    Filed: November 4, 2008
    Date of Patent: November 12, 2013
    Assignee: Hach Company
    Inventors: Perry A. Palumbo, Brian Harmon
  • Patent number: 8576400
    Abstract: Herein are disclosed optoelectronic methods and devices for detecting the presence of an analyte. Such methods and devices may comprise at least one sensing element that is responsive to the presence of an analyte of interest and that may be interrogated optically by the use of at least one light source and at least one light detector.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: November 5, 2013
    Assignee: 3M Innovative Properties Company
    Inventors: John C. Hulteen, Kiran S. Kanukurthy, Neal A. Rakow, Andrzej F. Rybacha, Richard L. Rylander, Arthur Scheffler, Zeljko Zupanc
  • Patent number: 8553221
    Abstract: Apparatus for performing Raman spectroscopy may include a first laser source having a first emission wavelength and a second laser source having a second emission wavelength. A separation between the first and second emission wavelengths may correspond to a width of a Raman band of a substance of interest. An optical switch may provide switching between the first and second laser sources. An ensemble of individually addressable laser emitters may be provided. A Bragg grating element may receive laser light from the ensemble. An optical system may direct light from the Bragg grating element into an optical fiber. A combined beam through the optical fiber may contain light from each of the emitters.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: October 8, 2013
    Assignee: PD-LD, Inc.
    Inventors: Boris Leonidovich Volodin, Vladimir Sinisa Ban
  • Patent number: 8553210
    Abstract: A system and method for locating and identifying unknown samples. A targeting mode may be utilized to scan regions of interest for potential unknown materials. This targeting mode may interrogate regions of interest using SWIR and/or fluorescence spectroscopic and imaging techniques. Unknown samples detected in regions of interest may be further interrogated using a combination of Raman and LIBS techniques to identify the unknown samples. Structured illumination may be used to interrogate an unknown sample. Data sets generated during interrogation may be compared to a reference database comprising a plurality of reference data sets, each associated with a known material. The system and method may be used to identify a variety of materials including: biological, chemical, explosive, hazardous, concealment, and non-hazardous materials.
    Type: Grant
    Filed: August 15, 2011
    Date of Patent: October 8, 2013
    Assignee: ChemImage Corporation
    Inventors: Jeffrey Beckstead, Patrick Treado, Matthew Nelson
  • Patent number: 8548222
    Abstract: Systems and methods are provided for evaluating and sorting seeds based on characteristics of the seeds. One method generally includes collecting image data from different parts of the seeds, and then analyzing the collected image data to determine if the seeds exhibit at least one or more characteristics. The seeds can then be sorted to desired seed repositories based on whether or not the seeds exhibit the at least one or more characteristics.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: October 1, 2013
    Assignee: Monsanto Technology LLC
    Inventors: Kevin L. Deppermann, James Crain, Sam R. Eathington, Mike Graham, Steven H. Modiano
  • Patent number: 8547540
    Abstract: A system and method for locating and identifying unknown samples. A targeting mode may be utilized to scan regions of interest for potential unknown materials. This targeting mode may interrogate regions of interest using SWIR and/or fluorescence spectroscopic and imaging techniques. Unknown samples detected in regions of interest may be further interrogated using a combination of Raman and LIBS techniques to identify the unknown samples. Structured illumination may be used to interrogate an unknown sample. Data sets generated during interrogation may be compared to a reference database comprising a plurality of reference data sets, each associated with a known material. The system and method may be used to identify a variety of materials including: biological, chemical, explosive, hazardous, concealment, and non-hazardous materials.
    Type: Grant
    Filed: August 15, 2011
    Date of Patent: October 1, 2013
    Assignee: ChemImage Corporation
    Inventors: Jeffrey Beckstead, Patrick Treado, Matthew Nelson
  • Patent number: 8538126
    Abstract: A method of and apparatus for grading a characteristic of an animal is described. The animal is guided to a detection area whereupon an image of the back of the animal is captured. Analysis of the image identifies anatomical points and determines angles at these points. The angles are then used to calculate a grading for a characteristic of the animal. An embodiment is presented for automating the determination of body score condition in dairy cows using seven angles determined at three anatomical points from an image over the back of the cow.
    Type: Grant
    Filed: August 21, 2008
    Date of Patent: September 17, 2013
    Inventors: Andrew M. Peacock, Oliver Lewis, Jeffrey M. Bewley
  • Patent number: 8537360
    Abstract: A system for evaluating the susceptibility of a soybean plant to iron deficiency chlorosis is described. Soybean plants are planted in range and rows multiple micro-plots and a cart is used to pass a radiometric sensor over the micro-plots. The cart may have a sensor housing that is divided into multiple partitions with a radiometric sensor assembly positioned within each partition. Each sensor assembly generates a data signal and a computer receives and stores the data signals. The field cart is positioned above the range. The number of partitions corresponds to the number of rows in the range and each sensor assembly is positioned above a single row.
    Type: Grant
    Filed: August 23, 2010
    Date of Patent: September 17, 2013
    Assignee: Syngenta Participations AG
    Inventors: Walter Stachon, Ken Luebbert, John Gass
  • Patent number: 8526001
    Abstract: An instrument for measuring and analyzing surface plasmon resonance on a sensor surface has a polarized light source optically connected to the sensor surface by a plurality of optical elements, including in one embodiment an optical telescope that transfers light from a rotatable reflecting surface to the sensor surface. Selective positioning of a cylindrical lens into a first position within the path of light transforms collimated light to a rectangular wedge that is incident upon the sensor surface at numerous angles. In another embodiment, the light source is operated as a laser to excite fluorescence on the sensor surface and the fluorescence is selectively directed to a detector by appropriate optical elements positioned in specific configurations.
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: September 3, 2013
    Assignee: Ciencia, Inc.
    Inventors: George N. Gibson, Ernest F. Guignon, Michael T. Reilly
  • Patent number: 8515154
    Abstract: A method for verifying repairs on masks for photolithography is provided. A mask fabricated based on a mask layout is inspected for defects, and the positions at which defects are found on the mask are stored in a position file. In a repair step, the defects are repaired and, for each repaired position, in a verification step, an aerial image of the mask is taken at that position and the aerial image is analyzed to determine whether at that position the mask meets tolerance criteria established for one or more selected target parameters, and if the tolerance criteria have been met, the repair is verified. The verification can include a) based on the position file, a desired structure is defined in the mask layout at the repaired position, b) an aerial image is simulated for the desired structure, c) the captured aerial image is compared with the simulated one, and d) based on the comparison, a decision is made as to whether the repair at that position is verified.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: August 20, 2013
    Assignee: Carl Zeiss SMS GmbH
    Inventors: Thomas Scherübl, Matthias Wächter, Hans Van Doornmalen
  • Patent number: 8508735
    Abstract: A drive system drives a movable body, based on measurement results of a first measurement system which measures the position of the movable body in an XY plane by irradiating a measurement beam from an arm member on a grating placed on a surface parallel to the XY plane of the movable body and measurement results of a second measurement system which measures a variance of the arm member using a laser interferometer. In this case, the drive system corrects measurement errors caused due to a variance of the arm member included in the measurement results of the first measurement system, using the measurement results of the second measurement system.
    Type: Grant
    Filed: September 17, 2009
    Date of Patent: August 13, 2013
    Assignee: Nikon Corporation
    Inventor: Yuichi Shibazaki
  • Patent number: 8508729
    Abstract: Apparatus for performing Raman analysis may include a laser source module, a beam delivery and signal collection module, a spectrum analysis module, and a digital signal processing module. The laser source module delivers a laser beam to the beam delivery and signal collection module. The beam delivery and signal collection module delivers the laser source beam to a sample, collects Raman scattered light scattered from the sample, and delivers the collected Raman scattered light to the spectrum analysis module. The spectrum analysis module demultiplexes the Raman scattered light into discrete Raman bands of interest, detects the presence of signal energy in each of the Raman bands, and produces a digital signal that is representative of the signal energy present in each of the Raman bands. The digital signal processing module is adapted to perform a Raman analysis of the sample.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: August 13, 2013
    Assignee: PD-LD, Inc.
    Inventors: Vladimir Sinisa Ban, Boris Leonidovich Volodin, Neal R. Stoker
  • Patent number: 8502983
    Abstract: Disclosed are an apparatus and a method for detecting a surface plasmon resonance. The apparatus may radiate a polarized beam of light to a device, such as a surface plasmon resonance generator, and may measure variations in a temperature of the device to detect whether a surface plasmon resonance has occurred. The detection of a surface plasmon resonance may be associated with the presence of a particular material such as volatile organic compounds (VOCs) or materials disrupting ozone, for example.
    Type: Grant
    Filed: November 3, 2009
    Date of Patent: August 6, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sun-Rock Choi, Dae-Hwan Kim, Seung-Jin Oh, Joo-Ho Kim, Woo-Kyu Kim