Patents Examined by Jason Berman
  • Patent number: 11569069
    Abstract: A chamber component for a processing chamber is disclosed herein. In one embodiment, a chamber component for a processing chamber includes a component part body having unitary monolithic construction. The component part body has a textured surface. The textured surface includes a plurality of independent engineered macro features integrally formed with the component part body. The engineered macro features include a macro feature body extending from the textured surface.
    Type: Grant
    Filed: July 31, 2020
    Date of Patent: January 31, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Kadthala R. Narendrnath, Govinda Raj, Goichi Yoshidome, Bopanna Ichettira Vasantha, Umesh M. Kelkar
  • Patent number: 11569071
    Abstract: A processing chamber includes a ground shield and a cover ring. The ground shield includes an annular body, and at least one guide pin extending from the annular body. The cover ring is positioned on the ground shield, and includes an annular body including at least one recess. At least a part of the at least one guide pin is receivable in the at least one recess, an inner cylindrical ring extends from the annular body, and an outer cylindrical ring extends from the annular body and is radially separated from the inner cylindrical ring by a horizontally extending portion of the annular body.
    Type: Grant
    Filed: March 26, 2021
    Date of Patent: January 31, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Tsung-Cheng Wu, Sheng-Ying Wu, Ming-Hsien Lin
  • Patent number: 11557499
    Abstract: Methods and apparatus for protecting parts of a process chamber from thermal cycling effects of deposited materials. In some embodiments, a method of protecting the part of the process chamber includes wet etching the part with a weak alkali or acid, cleaning the part by bead blasting, coating at least a portion of a surface of the part with a stress relief layer. The stress relief layer forms a continuous layer that is approximately 50 microns to approximately 250 microns thick and is configured to preserve a structural integrity of the part from the thermal cycling of aluminum deposited on the part. The method may also include wet cleaning of the part with a heated deionized water rinse after formation of the stress relief layer.
    Type: Grant
    Filed: October 16, 2020
    Date of Patent: January 17, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Yuichi Wada, Kok Wei Tan, Chul Nyoung Lee, Siew Kit Hoi, Xinxin Wang, Zheng Min Clarence Chong, Yaoying Zhong, Kok Seong Teo
  • Patent number: 11555250
    Abstract: A method includes receiving a metal component including a raw surface that includes a metal base, a first native oxide disposed on the metal base, and hydrocarbons disposed on the metal base. The method further includes machining the raw surface of the metal component to remove the first native oxide and a first portion of the hydrocarbons from the metal base. The machining generates an as-machined surface of the metal component including the metal base without the first native oxide and without the first portion of the hydrocarbons. The method further includes performing a surface machining of the as-machined surface of the metal component to remove a second portion of the hydrocarbons. The method further includes surface treating the metal component to remove a third portion of the hydrocarbons. The method further includes performing a cleaning of the metal component and drying the metal component.
    Type: Grant
    Filed: April 27, 2021
    Date of Patent: January 17, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Yuanhong Guo, Sheng Michael Guo, Marek W Radko, Steven Victor Sansoni, Nagendra Madiwal, Matvey Farber, Pingping Gou, Song-Moon Suh, Jeffrey C. Hudgens, Yuji Murayama, Anurag Bansal, Shaofeng Chen, Michael Kuchar
  • Patent number: 11542594
    Abstract: An advanced sputter target is disclosed. The advanced sputter target comprises two components, a porous carrier, and a metal material disposed within that porous carrier. The porous carrier is designed to be a high porosity, open cell structure such that molten material may flow through the carrier. The porous carrier also provides structural support for the metal material. The cell sizes of the porous carrier are dimensioned such that the capillary action and surface tension prohibits the metal material from spilling, dripping, or otherwise exiting the porous carrier. In some embodiments, the porous carrier is an open cell foam, a weave of strands or stacked meshes.
    Type: Grant
    Filed: April 20, 2021
    Date of Patent: January 3, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Graham Wright, Klaus Becker
  • Patent number: 11545347
    Abstract: Apparatus and methods for forming and using internally divisible physical vapor deposition (PVD) process chambers using shutter disks are provided herein. In some embodiments, an internally divisible process chamber may include an upper chamber portion having a conical shield, a conical adaptor, a cover ring, and a target, a lower chamber portion having a substrate support having inner and outer deposition rings, and wherein the substrate support is vertically movable, and a shutter disk assembly configured to internally divide the process chamber and create a separate sealed deposition cavity and a separate sealed oxidation cavity, wherein the shutter disk assembly includes one or more seals disposed along its outer edges and configured to contact at least one of the conical shield, the conical adaptor, or the deposition rings to form the separate sealed deposition and oxidation cavities.
    Type: Grant
    Filed: February 24, 2021
    Date of Patent: January 3, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: John Joseph Mazzocco, Anantha K. Subramani, Yang Guo
  • Patent number: 11535929
    Abstract: An ion beam deposition apparatus includes a substrate assembly to secure a substrate, a target assembly slanted with respect to the substrate assembly, the target assembly including a target with deposition materials, an ion gun to inject ion beams onto the target, such that ions of the deposition materials are discharged toward the substrate assembly to form a thin layer on the substrate, and a substrate heater to heat the substrate to a deposition temperature higher than a room temperature.
    Type: Grant
    Filed: June 11, 2020
    Date of Patent: December 27, 2022
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jeong-Heon Park, Whankyun Kim, Sukhoon Kim, Junho Jeong
  • Patent number: 11521840
    Abstract: A method and apparatus are for controlling stress variation in a material layer formed via pulsed DC physical vapour deposition. The method includes the steps of providing a chamber having a target from which the material layer is formed and a substrate upon which the material layer is formable, and subsequently introducing a gas within the chamber. The method further includes generating a plasma within the chamber and applying a first magnetic field proximate the target to substantially localise the plasma adjacent the target. An RF bias is applied to the substrate to attract gas ions from the plasma toward the substrate and a second magnetic field is applied proximate the substrate to steer gas ions from the plasma to selective regions upon the material layer formed on the substrate.
    Type: Grant
    Filed: February 20, 2018
    Date of Patent: December 6, 2022
    Assignee: SPTS Technologies Limited
    Inventors: Anthony Wilby, Steve Burgess, Ian Moncrieff, Clive Widdicks, Scott Haymore, Rhonda Hyndman
  • Patent number: 11512387
    Abstract: Methods and apparatus for passivating a target are provided herein. For example, a method includes a) supplying an oxidizing gas into an inner volume of the process chamber; b) igniting the oxidizing gas to form a plasma and oxidize at least one of a target or target material deposited on a process kit disposed in the inner volume of the process chamber; and c) performing a cycle purge comprising: c1) providing air into the process chamber to react with the at least one of the target or target material deposited on the process kit; c2) maintaining a predetermined pressure for a predetermined time within the process chamber to generate a toxic by-product caused by the air reacting with the at least one of the target or target material deposited on the process kit; and c3) exhausting the process chamber to remove the toxic by-product.
    Type: Grant
    Filed: April 13, 2020
    Date of Patent: November 29, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Chao Du, Xing Chen, Keith A. Miller, Jothilingam Ramalingam, Jianxin Lei
  • Patent number: 11515131
    Abstract: A thin-film system comprising a microplasma region where sputtered particles are formed, a power supply that supplies power to the microplasma region, gas flow hardware to regulate flow of gas to the microplasma region, a deposition nozzle that forms a thin film on a substrate and a supply line for supplying sputtered particles to the deposition nozzle, wherein the microplasma region is decoupled from the deposition nozzle.
    Type: Grant
    Filed: December 6, 2019
    Date of Patent: November 29, 2022
    Assignee: The Charles Stark Draper Laboratory Inc.
    Inventor: Isaac Ehrenberg
  • Patent number: 11515132
    Abstract: Physical vapor deposition target assemblies and methods of manufacturing such target assemblies are disclosed. An exemplary target assembly comprises a flow pattern including a plurality of arcs and bends fluidly connected to an inlet end and an outlet end.
    Type: Grant
    Filed: May 11, 2021
    Date of Patent: November 29, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Sanjay Bhat, Vibhu Jindal, Vishwas Kumar Pandey
  • Patent number: 11508563
    Abstract: Methods and apparatus for processing a substrate using improved shield configurations are provided herein. For example, a process kit for use in a physical vapor deposition chamber comprises a shield comprising an inner wall comprising an upper portion having a first wavy fin configuration and a bottom portion having a second wavy fin configuration different from the first wavy fin configuration such that a surface area of the shield is about 1400 in2 to about 1410 in2.
    Type: Grant
    Filed: May 24, 2021
    Date of Patent: November 22, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Soundarrajan Jembulingam, Jian Janson Chen, Jeonghoon Oh
  • Patent number: 11495446
    Abstract: A film formation device includes a target holder configured to hold a target for emitting sputtering particles in a processing space inside a processing chamber, a sputtering particle emitting part configured to emit the sputtering particles from the target, a sputtering particle shielding plate having a passage hole through which the emitted sputtering particles pass, a shielding member provided to shield the passage hole, a movement mechanism configured to move the shielding member in the horizontal direction, and a controller. The controller controls the shielding member, which has the placement portion on which a substrate is placed, to be moved in one direction of the horizontal direction, and controls the sputtering particles to be emitted from the target. The sputtering particles passed through the passage hole are deposited on the substrate.
    Type: Grant
    Filed: March 20, 2019
    Date of Patent: November 8, 2022
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Masato Shinada, Hiroyuki Toshima, Einstein Noel Abarra
  • Patent number: 11489188
    Abstract: A method of manufacturing by magnetron cathode sputtering an electrolyte film for use in solid oxide cells (SOC). This method comprises the steps consisting of heating a substrate to a temperature ranging from 200° C. to 1200° C.; followed by subjecting the substrate to at least two treatment cycles, each treatment cycle comprising: 1) depositing one layer of a metal precursor on the substrate by magnetron cathode sputtering of a target made up of the metal precursor, the sputtering being carried out under elemental sputtering conditions; followed by 2) oxidation-crystallisation of the metal precursor forming the layer deposited on the substrate in the presence of oxygen to obtain the transformation of the metal precursor into the electrolyte material; and in that the substrate is kept at a temperature ranging from 200° C. to 1200° C. for the entire duration of each treatment cycle.
    Type: Grant
    Filed: September 25, 2018
    Date of Patent: November 1, 2022
    Assignees: COMMISSARIAT À L'ÉNERGIE ATOMIQUE ET AUX ÉNERGIES ALTERNATIVES, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, UNIVERSITE D'ORLEANS
    Inventors: Julien Vulliet, Anne-Lise Thomann, Pierre-Laurent Coddet
  • Patent number: 11489105
    Abstract: A method of fabricating a piezoelectric layer includes depositing a piezoelectric material onto a substrate in a first crystallographic phase by physical vapor deposition while the substrate remains at a temperature below 400° C., and thermally annealing the substrate at a temperature above 500° C. to convert the piezoelectric material to a second crystallographic phase. The physical vapor deposition includes sputtering from a target in a plasma deposition chamber.
    Type: Grant
    Filed: November 21, 2019
    Date of Patent: November 1, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Abhijeet Laxman Sangle, Vijay Bhan Sharma, Ankur Kadam, Bharatwaj Ramakrishnan, Visweswaren Sivaramakrishnan, Yuan Xue
  • Patent number: 11479847
    Abstract: A magnetron sputtering system includes a substrate mounted within a vacuum chamber. A plurality of cathode assemblies includes a first set of cathode assemblies and a second set of cathode assemblies, and is configured for reactive sputtering. Each cathode assembly includes a target comprising sputterable material and has an at least partially exposed planar sputtering surface. A target support is configured to support the target in the vacuum chamber and rotate the target relative to the vacuum chamber about a target axis. A magnetic field source includes a magnet array. A cathode assemblies controller assembly is operative to actuate the first set of cathode assemblies without actuating the second set of cathode assemblies, and to actuate the second set of cathode assemblies without actuating the first set of cathode assemblies.
    Type: Grant
    Filed: October 14, 2020
    Date of Patent: October 25, 2022
    Assignee: Alluxa, Inc.
    Inventors: Michael A. Scobey, Shaun Frank McCaffery
  • Patent number: 11482422
    Abstract: In some embodiments of the present disclosure, a method of manufacturing a semiconductor structure includes providing a substrate including a first atom and a second atom; forming a compound over the substrate by bonding the first atom with a ionized etchant; and removing the compound from the substrate by bombarding the compounds with a charged particle having a bombarding energy smaller than a bonding energy between the first atom and the second atom, wherein the charged particle and the ionized etchant include different ions.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: October 25, 2022
    Inventors: Nai-Han Cheng, Chi-Ming Yang
  • Patent number: 11479848
    Abstract: A film forming apparatus includes a target holder that holds a target facing a substrate and extending in a predetermined direction on a horizontal plane, a magnet unit including a pair of magnet assemblies each having magnets and disposed at a back side of the target holder, a pair of shielding members disposed between the target and the substrate to extend from the target toward the substrate, and a moving mechanism configured to reciprocate the magnet unit between one end and the other end in the predetermined direction. The magnet assemblies are arranged along the predetermined direction, and each of the shielding members is disposed, in plan view, on a boundary line between a first region where only one of the magnet assemblies passes during a reciprocating motion of the magnet unit and a second region where both of the magnet assemblies pass therethrough during the reciprocating motion.
    Type: Grant
    Filed: January 7, 2021
    Date of Patent: October 25, 2022
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Shota Ishibashi, Hiroyuki Toshima, Hiroyuki Iwashita, Tatsuo Hirasawa
  • Patent number: 11476120
    Abstract: Systems and methods of sample preparation using dual ion beam trenching are described. In an example, an inside of a semiconductor package is non-destructively imaged to determine a region of interest (ROI). A mask is positioned over the semiconductor package, and a mask window is aligned with the ROI. A first ion beam and a second ion beam are swept, simultaneously or sequentially, along an edge of the mask window to trench the semiconductor package and to expose the ROI for analysis.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: October 18, 2022
    Assignee: Intel Corporation
    Inventors: Purushotham Kaushik Muthur Srinath, Richard Kenneth Brewer, Deepak Goyal
  • Patent number: 11450511
    Abstract: Methods and apparatus are used for adjusting film stress profiles on substrates. An apparatus may include a PVD chamber with a pedestal configured to support a substrate during processing on a cover positioned on an uppermost surface of the pedestal. The cover is constructed with multiple electrodes such as, for example, a first electrode, a second electrode, and a third electrode. The second electrode is positioned between and electrically separated from the first electrode and the second electrode. A substrate stress profile tuner is electrically connected to the first electrode, the second electrode, and the third electrode and configured to independently adjust an RF voltage level of at least the second electrode and the third electrode relative to RF ground to produce a more uniform film stress profile.
    Type: Grant
    Filed: December 29, 2020
    Date of Patent: September 20, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Lizhong Sun, Yi Yang, Jian Janson Chen, Chong Ma, Xiaodong Yang