Patents Examined by Jeffrie R. Lund
  • Patent number: 10472718
    Abstract: A device and a method for depositing organic layers onto a substrate includes a process gas source with a temperature-controlled evaporator, and a carrier gas supply line which opens into the evaporator in order to supply a carrier gas flow into a temperature-controlled first transport line. A first dilution gas supply line, which opens into the first transport line, supplies a dilution gas flow into the first transport line. The device also comprises a temperature-controlled gas inlet element fluidly connected to the first transport line. A gaseous starting material can be supplied into a processing chamber via the gas inlet element. A substrate is disposed on a temperature-controlled susceptor located in the processing chamber, and a layer is grown on the substrate using the gaseous starting material.
    Type: Grant
    Filed: October 1, 2015
    Date of Patent: November 12, 2019
    Assignee: AIXTRON SE
    Inventors: Markus Gersdorff, Martin Dauelsberg, Baskar Pagadala Gopi, Michael Long
  • Patent number: 10443117
    Abstract: A plasma nitriding apparatus includes: a surface treatment unit which includes a treatment tank to house part of a treatment object inclusive of a surface treatment region, and performs a nitriding treatment on the surface treatment region inside of the treatment tank by using plasma of a treatment gas; and an outer container which receives supply of the treatment gas, and houses the treatment object and the treatment tank so that a region of the treatment object other than the part is exposed from the treatment tank.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: October 15, 2019
    Assignee: IHI Corporation
    Inventors: Norimitsu Kameya, Kenji Fuchigami
  • Patent number: 10431431
    Abstract: A gas supply delivery arrangement of a plasma processing system for processing a substrate with gases introduced through at least first, second, and third gas injection zones comprises process gas supply inlets and tuning gas inlets. A mixing manifold comprises gas sticks in fluid communication with a process gas supply and tuning gas sticks in fluid communication with a tuning gas supply. A first gas outlet delivers gas to the first gas injection zone, a second gas outlet delivers gas to the second gas injection zone, and a third gas outlet delivers gas to the third gas injection zone. A gas splitter is in fluid communication with the mixing manifold, and includes a first valve arrangement which splits mixed gas exiting the mixing manifold into a first mixed gas supplied to the first gas outlet and a second mixed gas supplied to the second, and/or third gas outlets.
    Type: Grant
    Filed: October 19, 2015
    Date of Patent: October 1, 2019
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Mark Taskar, Iqbal Shareef, Anthony Zemlock, Ryan Bise, Nathan Kugland
  • Patent number: 10407769
    Abstract: A method and apparatus for decreasing the radial temperature gradient in CVI/CVD furnaces is provided. The apparatus may comprise a graphite susceptor disposed within a vessel. Porous structures may be stacked within the graphite susceptor. The stack of porous structures may form a circular shape proximate a radially inward surface of the graphite susceptor. Graphite panels may be disposed within the graphite susceptor. The graphite panels may be located proximate a radially inward surface of the porous structures. The graphite panels may radiate heat radially outward and towards the graphite susceptor. Reactant gas may be flowed into the graphite susceptor.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: September 10, 2019
    Assignee: GOODRICH CORPORATION
    Inventor: James W. Rudolph
  • Patent number: 10410841
    Abstract: A gas injection system includes (a) a side gas plenum, (b) a plurality of N gas inlets coupled to said side gas plenum, (c) plural side gas outlets extending radially inwardly from said plenum, (d) an N-way gas flow ratio controller having N outputs coupled to said N gas inlets respectively, and (e) an M-way gas flow ratio controller having M outputs, respective ones of said M outputs coupled to said tunable gas nozzle and a gas input of said N-way gas flow ratio controller.
    Type: Grant
    Filed: May 24, 2018
    Date of Patent: September 10, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Yan Rozenzon, Kyle Tantiwong, Imad Yousif, Vladimir Knyazik, Bojenna Keating, Samer Banna
  • Patent number: 10410840
    Abstract: A gas supplying method of supplying a process gas containing a gas of at least one gaseous species into a process space in a semiconductor manufacturing apparatus includes supplying the process gas by controlling a flow rate value of the gas to be a first value during a first period; supplying the process gas by controlling the flow rate value of the gas to be a second value smaller than the first value during a second period; supplying the process gas by controlling the flow rate value of the gas to be a third value greater than the first value during a third period; and supplying the process gas by controlling the flow rate value of the gas to be a fourth value smaller than the second value during a fourth period, wherein these steps are periodically repeated in a predetermined order.
    Type: Grant
    Filed: February 5, 2015
    Date of Patent: September 10, 2019
    Assignee: Tokyo Electron Limited
    Inventors: Tomoyuki Mizutani, Hiroshi Tsujimoto
  • Patent number: 10407773
    Abstract: Disclosed are methods of depositing films of material on semiconductor substrates employing the use of a secondary purge. The methods may include flowing a film precursor into a processing chamber and adsorbing the film precursor onto a substrate in the processing chamber such that the precursor forms an adsorption-limited layer on the substrate. The methods may further include removing at least some unadsorbed film precursor from the volume surrounding the adsorbed precursor by purging the processing chamber with a primary purge gas, and thereafter reacting adsorbed film precursor while a secondary purge gas is flowed into the processing chamber, resulting in the formation of a film layer on the substrate. The secondary purge gas may include a chemical species having an ionization energy and/or a disassociation energy equal to or greater than that of O2. Also disclosed are apparatuses which implement the foregoing processes.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: September 10, 2019
    Assignee: Lam Research Corporation
    Inventors: Adrien LaVoie, Hu Kang, Purushottam Kumar, Shankar Swaminathan, Jun Qian, Frank L. Pasquale, Chloe Baldasseroni
  • Patent number: 10400334
    Abstract: A showerhead for vacuum deposition of several species, the showerhead being divided into several quarters containing each at least one outlet for the species, each quarter defining the wall of an underlying compartment containing at least one species, wherein two adjacent compartments contain different species.
    Type: Grant
    Filed: September 12, 2016
    Date of Patent: September 3, 2019
    Assignee: ABCD TECHNOLOGY SARL
    Inventors: Giacomo Benvenuti, Estelle Halary Wagner, Christian Petit
  • Patent number: 10403536
    Abstract: An electrostatic chuck and a substrate processing apparatus including the same are disclosed. In one aspect, the electrostatic chuck includes a stage configured to support a substrate including a panel formation region and a dummy region surrounding the panel formation region. The electrostatic chuck includes a substrate fixing unit including a plurality of electrode patterns insulated from the substrate and spaced apart from one another, the substrate fixing unit at least partially overlapping the dummy region of the substrate and not overlapping the panel formation region of the substrate.
    Type: Grant
    Filed: June 9, 2016
    Date of Patent: September 3, 2019
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventors: Su-Kyoung Yang, Gyung-Min Baek, Joon-Yong Park, Chang-Oh Jeong
  • Patent number: 10400325
    Abstract: The present disclosure provides a system (100) for aligning a dispensing apparatus (110) utilized within a semiconductor deposition chamber (102). A stationary reference apparatus (106) is disposed along the bottom of the deposition chamber. A self-alignment support system (122), comprising one or more support components (124), is intercoupled between the dispensing apparatus and a deposition system exterior component (112). The self-alignment support system is adapted to facilitate and secure repositioning of the dispensing apparatus responsive to pressure applied to the dispensing surface (114) thereof. A non-yielding offset component (126) is placed upon a first surface (108) of the stationary reference apparatus. The dispensing surface of the dispensing apparatus is engaged with the offset component, and pressure is applied to the dispensing apparatus via the offset component until a desired alignment is achieved.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: September 3, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Martin B. Garcia
  • Patent number: 10373840
    Abstract: Various embodiments herein relate to methods, apparatus and systems for forming a recessed feature in dielectric material on a semiconductor substrate. Separate etching and deposition operations are employed in a cyclic manner. Each etching operation partially etches the feature. Each deposition operation forms a protective coating on the sidewalls of the feature to prevent lateral etch of the dielectric material during the etching operations. The protective coating may be deposited using methods that result in formation of the protective coating along substantially the entire length of the sidewalls. The protective coating may be deposited using particular reactants and/or reaction mechanisms that result in substantially complete sidewall coating at relatively low temperatures without the use of plasma. In some cases the protective coating is deposited using molecular layer deposition techniques.
    Type: Grant
    Filed: May 17, 2016
    Date of Patent: August 6, 2019
    Assignee: Lam Research Corporation
    Inventors: Eric A. Hudson, Dennis M. Hausmann, Joseph Scott Briggs
  • Patent number: 10366865
    Abstract: A gas delivery system for a ceramic showerhead includes gas connection blocks and a gas ring, the gas connection blocks mounted on the gas ring such that gas outlets in the blocks deliver process gas to gas inlets in an outer periphery of the showerhead. The gas ring includes a bottom ring with channels therein and a welded cover plate enclosing the channels. The gas ring can include a first channel extending ½ the length of the gas ring, two second channels connected at midpoints thereof to downstream ends of the first channel, and four third channels connected at midpoints thereof to downstream ends of the second channels. the cover plate can include a first section enclosing the first channel, two second sections connected at midpoints thereof to ends of the first section, and third sections connected at midpoints thereof to ends of the second sections.
    Type: Grant
    Filed: January 25, 2016
    Date of Patent: July 30, 2019
    Assignee: Lam Research Corporation
    Inventors: Michael Kang, Alex Paterson
  • Patent number: 10364498
    Abstract: According to one embodiment, a gas supply pipe has a first gas pipe configured to blow a gas which has flowed from an inflow opening via first gas blow holes arranged along a longitudinal direction, and a second gas pipe provided in parallel with the first gas pipe. The second gas pipe has second gas blow holes arranged along the longitudinal direction, and allows the gas to flow in a direction opposite to the first gas pipe.
    Type: Grant
    Filed: March 10, 2015
    Date of Patent: July 30, 2019
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Takahiro Terada, Takuya Matsuda, Kaori Deura, Masayuki Tanaka, Aya Watase
  • Patent number: 10366882
    Abstract: The present invention provides a technique by which heat can be efficiently recovered from a coolant used to cool a reactor, and contamination with dopant impurities from an inner wall of a reactor when polycrystalline silicon is deposited within the reactor can be reduced to produce high-purity polycrystalline silicon. With the use of hot water 15 having a temperature higher than a standard boiling point as a coolant fed to the reactor 10, the temperature of the reactor inner wall is kept at a temperature of not more than 370° C. Additionally, the pressure of the hot water 15 to be recovered is reduced by a pressure control section provided in a coolant tank 20 to generate steam. Thereby, a part of the hot water is taken out as steam to the outside, and reused as a heating source for another application.
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: July 30, 2019
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Shigeyoshi Netsu, Kyoji Oguro, Takaaki Shimizu, Yasushi Kurosawa, Fumitaka Kume
  • Patent number: 10351955
    Abstract: A semiconductor substrate processing apparatus for processing semiconductor substrates includes showerhead module delivering process gas through a faceplate having gas passages therethrough from the process gas source to a processing zone of the processing apparatus wherein individual semiconductor substrates are processed. The showerhead module comprises a gas delivery conduit in fluid communication with a cavity at a lower end thereof, a baffle arrangement in the gas delivery conduit and the cavity, and a blocker plate in the cavity disposed below the baffle arrangement. The baffle arrangement comprises baffles which divide process gas flowing through the gas delivery conduit into center, inner annular, and outer annular flow streams.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: July 16, 2019
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Arun Keshavamurthy, Bart van Schravendijk, David Cohen
  • Patent number: 10350728
    Abstract: Polishing pad cleaning systems and related methods are disclosed. A rotatable platen comprising a polishing pad in combination with a fluid, such as a polishing fluid, contacts a substrate to planarize material at the surface thereof and resultantly creates debris. A cleaning system introduces a spray system to remove debris from the polishing pad to prevent substrate damage and improve efficiency, a waste removal system for removing used spray, used polishing fluid, and debris from the polishing pad, and a polishing fluid delivery system for providing fresh polishing fluid to the polishing pad, such that the substrate only receives fresh polishing fluid upon each complete rotation of the platen. In this manner, within die performance is enhanced, the range of certain CMP processes is improved, scratches and contamination are avoided for each polished substrate and for later-polished substrates, and platen temperatures are reduced.
    Type: Grant
    Filed: October 21, 2015
    Date of Patent: July 16, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Jie Diao, Erik S. Rondum, Thomas Ho Fai Li, Bum Jick Kim, Christopher Heung-Gyun Lee
  • Patent number: 10344382
    Abstract: There is provided a film forming apparatus including a raw material gas nozzle provided with gas discharge holes for discharging a mixed gas of a raw material gas and a carrier gas; a flow regulating plate portion extended along the longitudinal direction of the raw material gas nozzle; a central region configured to supply a separating gas from a center side within a vacuum container toward a substrate loading surface of a rotary table; a protuberance portion protruded from the flow regulating plate portion toward the rotary table at a position shifted toward a center side of the rotary table from the gas discharge holes; and a protuberance portion configured to restrain the separating gas from flowing between the flow regulating plate portion and the rotary table; and an exhaust port configured to vacuum exhaust the interior of the vacuum container.
    Type: Grant
    Filed: May 8, 2015
    Date of Patent: July 9, 2019
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Hideomi Hane, Takahito Umehara, Takehiro Kasama, Tsubasa Watanabe
  • Patent number: 10337096
    Abstract: The present invention provides a method for manufacturing a deposition mask, which irradiates laser light L to a resin film 20 to form an opening pattern 4 having a polygonal shape in a plan view, the method including a step of irradiating the laser light L that is shaped using a beam-shaping mask 10 having a light transmissive window 18 that allows the laser light L to pass therethrough with light transmittance gradually reducing with distance from an edge of the light transmissive window 18 on at least one of opposing sides thereof within an area outside the light transmissive window 18 to thereby form the opening pattern 4 having at least one pair of opposing side walls 4a that are inclined to open wide toward a surface of the film 20 to be irradiated with the laser light L, from a surface opposite to the irradiated surface.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: July 2, 2019
    Assignee: V TECHNOLOGY CO., LTD.
    Inventor: Michinobu Mizumura
  • Patent number: 10337098
    Abstract: A method of growing carbon nanotubes is related. A reactor is provided. The reactor includes a reactor chamber and a carbon nanotube catalyst composite layer suspended in the reactor chamber. The carbon nanotube catalyst composite layer includes a carbon nanotube layer and a number of catalyst particles dispersed in the carbon nanotube layer. A mixture of carbon source gas and carrier gas is introduced into the reactor chamber to penetrate the carbon nanotube catalyst composite layer. The carbon nanotube catalyst composite layer is heated.
    Type: Grant
    Filed: October 13, 2016
    Date of Patent: July 2, 2019
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Yang Wu, Peng Liu, Yang Wei, Jia-Ping Wang, Kai-Li Jiang, Shou-Shan Fan
  • Patent number: 10329666
    Abstract: A vapor deposition apparatus, including: a reaction device having a reaction chamber; a first gas duct connected to the reaction chamber and configured to direct a process gas into the reaction chamber; a gas ionization device connected to the reaction device and configured to ionize a cleaning gas; and a second gas duct connected to the gas ionization device and configured to direct the cleaning gas into the gas ionization device; a common gas duct; and a three-way control mechanism. An end of the common gas duct is connected to the reaction chamber and the other end of the common gas duct is connected to a first gas port of the three-way control mechanism; the first gas duct and the gas ionization device are connected to a second gas port and a third gas port of the three-way control mechanism, respectively.
    Type: Grant
    Filed: January 5, 2016
    Date of Patent: June 25, 2019
    Assignees: BOE TECHNOLOGY GROUP CO., LTD., HEFEI BOE OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventors: Rui Zhang, Duanming Li, Kuohua Liao, Beum Ku Park