Patents Examined by Jeffrie R. Lund
  • Patent number: 10731253
    Abstract: A gas injector used for semiconductor equipment includes a housing shell, a rotating main shaft and a gas output distribution unit. The rotating main shaft is covered with the housing shell, and includes a plurality of magnetic fluid seals and a plurality of gas transmission tubes. The gas output distribution unit is coupled to a top end of the rotating main shaft, the gas output distribution unit being connected to a ceiling and a susceptor. The gas output distribution unit includes a plurality of boards spaced at intervals between the ceiling and the susceptor, thereby resulting in a plurality of gas output layers for outputting corresponding reaction gases.
    Type: Grant
    Filed: January 15, 2018
    Date of Patent: August 4, 2020
    Assignee: Hermes-Epitek Corporation
    Inventors: Tsan-Hua Huang, Kian-Poh Wong, Chia-Ying Lin
  • Patent number: 10724137
    Abstract: According to one aspect of the present disclosure, there is provided a cleaning method including: cleaning a component in which a deposit adhering to the component constituting an apparatus is removed by supplying and discharging a cleaning gas, wherein the act of cleaning includes controlling the apparatus so that a signal, which indicates a concentration of a predetermined gas generated by a reaction of the deposit and the cleaning gas, reaches a predetermined upper limit value or less and then stays within a range between the predetermined upper limit value and a predetermined lower limit value for a predetermined time period.
    Type: Grant
    Filed: January 28, 2014
    Date of Patent: July 28, 2020
    Assignee: KOKUSAI ELETRIC CORPORATION
    Inventors: Osamu Morita, Shinichiro Mori, Kenji Kameda
  • Patent number: 10720323
    Abstract: A method for processing a semiconductor wafer in a PECVD deposition chamber with a circular pedestal and a recessed portion formed around the outer top surface of the pedestal. The method may include using a circular wafer carrier ring with a recessed portion.
    Type: Grant
    Filed: January 8, 2016
    Date of Patent: July 21, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Jian Song, Ruben Anthony Pesina, Kamal Avala
  • Patent number: 10714354
    Abstract: Methods of and apparatuses for laterally etching semiconductor substrates using an atomic layer etch process involving exposing an oxidized surface of a semiconductor substrate to a fluorine-containing etch gas and heating the substrate to remove non-volatile etch byproducts by a sublimation mechanism are provided herein. Methods also including additionally pulsing a hydrogen-containing gas when pulsing the fluorine-containing etch gas. Apparatuses also include an ammonia mixing manifold suitable for separately preparing and mixing ammonia for use in various tools.
    Type: Grant
    Filed: March 1, 2017
    Date of Patent: July 14, 2020
    Assignee: Lam Research Corporation
    Inventors: Tom Kamp, Neema Rastgar, Michael Carl Drymon
  • Patent number: 10697064
    Abstract: A CVD apparatus includes a process chamber, a susceptor, an auxiliary supporting part, a gas spray part, and a shadow frame. The susceptor may be in the process chamber to support and heat a mother substrate. The auxiliary supporting part may be mounted on the susceptor in a tetragonal frame form to support and heat an edge of the mother substrate supported by the susceptor. The gas spray part may be in the process chamber to face the susceptor and may spray a process gas to the mother substrate. The shadow frame may cover an edge of the auxiliary supporting part and an edge of the susceptor extending from the edge of the auxiliary supporting part.
    Type: Grant
    Filed: September 1, 2015
    Date of Patent: June 30, 2020
    Assignee: LG DISPLAY CO., LTD.
    Inventors: Seung Chul Park, Hee-Yeol Kim
  • Patent number: 10683571
    Abstract: A gas inlet system for a wafer processing reactor includes a tubular gas manifold conduit adapted to be connected to a gas inlet port of the wafer processing reactor; and gas feeds including a first feed for feeding a first gas into the tubular gas manifold conduit and a second feed for feeding a second gas into the tubular gas manifold conduit. Each feed has two or more injection ports connected to the tubular gas manifold conduit at a first axial position of the tubular gas manifold conduit, and the injection ports of each of the gas feeds are evenly distributed along a circumference of the tubular gas manifold conduit at the first axial position.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: June 16, 2020
    Assignee: ASM IP Holding B.V.
    Inventors: Lucian C. Jdira, Herbert Terhorst, Michael Halpin, Carl White, Todd Robert Dunn, Eric Shero, Melvin Verbass, Christopher Wuester, Kyle Fondurulia
  • Patent number: 10679883
    Abstract: A system for processing wafers in a vacuum processing chamber. Carrier comprising a frame having a plurality of openings, each opening configured to accommodate one wafer. A transport mechanism configured to transport the plurality of carriers throughout the system. A plurality of wafer plates configured for supporting wafers. An attachment mechanism for attaching a plurality of wafer plates to each of the carriers, wherein each of the wafer plates is attached to a corresponding position at an underside of a corresponding carrier, such that each of the wafers positioned on one of the wafer carriers is positioned within one of the plurality of opening in the carrier. Mask attached over front side of one of the plurality of opening in the carrier. Alignment stage supports wafer plate under the opening in the carrier. A camera positioned to simultaneously image the mask and the wafer.
    Type: Grant
    Filed: October 3, 2016
    Date of Patent: June 9, 2020
    Assignee: INTEVAC, INC.
    Inventors: Terry Bluck, Aaron Zanetto, William Eugene Runstadler, Jr., Terry Pederson
  • Patent number: 10676819
    Abstract: Described herein is a method of depositing a plasma resistant ceramic coating onto a surface of a chamber component using a non-line-of-sight (NLOS) deposition process, such as atomic layer deposition (ALD) and chemical vapor deposition (CVD). The plasma resistant ceramic coating consists of an erbium containing oxide, an erbium containing oxy-fluoride, or an erbium containing fluoride. Also described are chamber components having a plasma resistant ceramic coating of an erbium containing oxide, an erbium containing oxy-fluoride, or an erbium containing fluoride.
    Type: Grant
    Filed: November 22, 2017
    Date of Patent: June 9, 2020
    Assignee: Applied Materials, Inc.
    Inventor: Jennifer Y Sun
  • Patent number: 10679869
    Abstract: A placing table on an embodiment includes a supporting member and a base. The supporting member includes a placing region provided with a heater, and an outer peripheral region surrounding the placing region. The base includes a first region supporting the placing region thereon, and a second region surrounding the first region. In the second region, through holes are formed. Wirings electrically connected to the heater passes through the through holes of the second region.
    Type: Grant
    Filed: June 1, 2015
    Date of Patent: June 9, 2020
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Dai Kitagawa, Katsuyuki Koizumi, Tsutomu Nagai, Daisuke Hayashi, Satoru Teruuchi
  • Patent number: 10665476
    Abstract: In one aspect, a valve assembly adapted to seal an opening in a chamber is disclosed. Valve assembly includes a housing being adapted for coupling to a chamber surface having the opening therein, the housing including a threshold portion positioned adjacent to the chamber opening, the threshold portion having one or more inlets adapted to supply gas to an interior region of the housing adjacent to the chamber opening; and a sealing surface adapted to selectively (1) seal the opening, and (2) retract from the opening so as not to obstruct substrate passage. Numerous other system aspects are provided, as are methods and computer program products in accordance with these and other aspects.
    Type: Grant
    Filed: July 18, 2014
    Date of Patent: May 26, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Efrain Quiles, Mehran Behdjat, Robert B. Lowrance, Michael R. Rice, Brent Vopat
  • Patent number: 10665430
    Abstract: A gas supply system includes: a first flow channel connecting a first gas source and a chamber; a second flow channel connecting a second gas source and the first flow channel; a control valve, provided in the second flow channel, configured to control a flow rate of the second gas; an orifice provided downstream of the control valve and at a terminus of the second flow channel; a switching valve, provided at a connection point between the first flow channel and the terminus of the second flow channel, configured to control a supply timing of the second gas; an exhaust mechanism, connected to a flow channel between the control valve and the orifice in the second flow channel, configured to exhaust the second gas; and a controller configured to bring the control valve, the switching valve and the exhaust mechanism into operation.
    Type: Grant
    Filed: July 10, 2017
    Date of Patent: May 26, 2020
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Atsushi Sawachi, Norihiko Amikura, Kouji Nishino, Yohei Sawada, Yoshiharu Kishida
  • Patent number: 10662527
    Abstract: A semiconductor device comprising a manifold for uniform vapor deposition is disclosed. The semiconductor device can include a manifold comprising a bore and having an inner wall. The inner wall can at least partially define the bore. A first axial portion of the bore can extend along a longitudinal axis of the manifold. A supply channel can provide fluid communication between a gas source and the bore. The supply channel can comprise a slit defining an at least partially annular gap through the inner wall of the manifold to deliver a gas from the gas source to the bore. The at least partially annular gap can be revolved about the longitudinal axis.
    Type: Grant
    Filed: June 1, 2016
    Date of Patent: May 26, 2020
    Assignee: ASM IP HOLDING B.V.
    Inventor: David Marquardt
  • Patent number: 10657999
    Abstract: A plasma CVD device includes a chamber (102), an anode (104), a cathode (103), a holding portion which holds a substrate to be deposited (101) a plasma wall (88) an anti-adhesion member (91) which is arranged between a first gap (81) between the anode and the plasma wall and a first inner surface (102a) of the chamber and a pedestal (92) which is arranged between the anti-adhesion member and a back surface of the anode and which is electrically connected to the anode. The maximum diameter of each of the first gap, a second gap (82) between the anode and the anti-adhesion member, a third gap (83) between the back surface of the anode and the pedestal, a fourth gap (84) between the plasma wall and the anti-adhesion member and a fifth gap (85) between the anti-adhesion member and the pedestal is equal to or less than 4 mm.
    Type: Grant
    Filed: June 20, 2014
    Date of Patent: May 19, 2020
    Assignee: ADVANCED MATERIAL TECHNOLOGIES, INC.
    Inventors: Kouji Abe, Toshiyuki Watanabe, Masafumi Tanaka, Kohei Okudaira, Hiroyasu Sekino, Yuuji Honda
  • Patent number: 10655218
    Abstract: A substrate processing apparatus is disclosed. The substrate processing apparatus includes a gas supply system which supplies a gas into a process chamber, an exhaust system which discharges the gas existing within the process chamber; and a gas supply pipe which supplies the gas into the process chamber via holes, and disposed inside the process chamber, where one end of the gas supply pipe is connected to the gas supply system, the other end of the gas supply pipe is connected to the exhaust system via a pipeline outside the process chamber.
    Type: Grant
    Filed: July 27, 2016
    Date of Patent: May 19, 2020
    Assignee: KOKUSAI ELECTRIC CORPORATION
    Inventor: Tsukasa Kamakura
  • Patent number: 10655224
    Abstract: A semiconductor system includes a chamber, a pedestal disposed in the chamber, and a focus ring that surrounds the pedestal. The pedestal has a center region for supporting a central region of a substrate, e.g., a wafer. The focus ring is configured to surround the center region of the pedestal. The focus ring has an annular support region that extends between an inner portion of the focus ring and an outer portion of the focus ring. The annular support region, which is disposed at an angle relative to a horizontal line, provides a knife-edge contact for the substrate when present over the center region of the pedestal and the annular support region of the focus ring. The knife-edge contact between the edge of the substrate and the annular support region of the focus ring disables chemical access to the substrate backside and thereby reduces unwanted backside deposition.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: May 19, 2020
    Assignee: Lam Research Corporation
    Inventors: Pulkit Agarwal, Ishtak Karim, Purushottam Kumar, Adrien LaVoie, Sung Je Kim, Patrick Breiling
  • Patent number: 10648075
    Abstract: A system for chemical vapor infiltration and densification may comprise a reaction chamber and a plurality of conduits fluidly coupled to an exhaust outlet of the reaction chamber. A first set of conduits of the plurality of conduits may define a first flow path and a second set of conduits of the plurality of conduits may define a second flow path. The second flow path may be fluidly coupled to an inlet of the reaction chamber. A hydrogen extraction component may be in fluid communication with a least one of the first set of conduits or the second set of conduits.
    Type: Grant
    Filed: October 5, 2017
    Date of Patent: May 12, 2020
    Assignee: GOODRICH CORPORATION
    Inventor: Tod Policandriotes
  • Patent number: 10651384
    Abstract: A double-layer mask component includes a first mask, a first mask frame, a second mask and a second mask frame. The first mask is fixed on the first mask frame, and a first clamping portion is provided within a region which is located on a surface of the first mask frame with the first mask fixed thereon and not covered by the first mask. The second mask is fixed on the second mask frame, and a second clamping portion is provided within a region which is located on a surface of the second mask frame with the second mask fixed thereon and not covered by the second mask. The surface of the first mask frame and the surface of the second mask frame are arranged in opposite, and the first clamping portion and the second clamping portion are clamped, so that the first mask fits with the second mask.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: May 12, 2020
    Assignees: BOE TECHNOLOGY GROUP CO., LTD., ORDOS YUANSHENG OPTOELECTRONICS CO., LTD.
    Inventors: Rong Zhao, Long Jin
  • Patent number: 10636627
    Abstract: A substrate processing apparatus includes: a substrate holder which holds a plurality of substrates; a processing vessel including an inner tube and an outer tube disposed outside the inner tube; a gas supply part which supplies a process gas in parallel to target surfaces of the substrates; an exhaust part which exhausts the process gas from the processing vessel through a gas outlet; an exhaust port formed in the inner tube; and a rectifying plate installed in an outer wall of the inner tube or an inner wall of the outer tube between the exhaust port and the gas outlet in a circumferential direction of the processing vessel. The rectifying plate is installed to extend upward from a position below a lower end of the substrate holder to a location corresponding at least to a lower end of the exhaust port.
    Type: Grant
    Filed: March 9, 2016
    Date of Patent: April 28, 2020
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Hirofumi Kaneko, Tomoyuki Nagata
  • Patent number: 10626491
    Abstract: The present invention provides a method for manufacturing a deposition mask, which irradiates laser light L to a resin film 20 to form an opening pattern 4 having a polygonal shape in a plan view, the method including a step of irradiating the laser light L that is shaped using a beam-shaping mask 10 having a light transmissive window 18 that allows the laser light L to pass therethrough with light transmittance gradually reducing with distance from an edge of the light transmissive window 18 on at least one of opposing sides thereof within an area outside the light transmissive window 18 to thereby form the opening pattern 4 having at least one pair of opposing side walls 4a that are inclined to open wide toward a surface of the film 20 to be irradiated with the laser light L, from a surface opposite to the irradiated surface.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: April 21, 2020
    Assignee: V TECHNOLOGY CO., LTD.
    Inventor: Michinobu Mizumura
  • Patent number: 10622196
    Abstract: A plasma processing apparatus includes a mounting stage on which a substrate is mounted, a focus ring arranged around a periphery of the mounting stage, a plurality of magnetic members arranged at a surface of the focus ring and a surface of the mounting stage facing opposite each other, and a temperature adjustment unit configured to adjust a temperature of the focus ring by introducing a heat transfer gas between the surface of the focus ring and the surface of the mounting stage facing opposite each other.
    Type: Grant
    Filed: August 18, 2014
    Date of Patent: April 14, 2020
    Assignee: Tokyo Electron Limited
    Inventors: Nobuyuki Nagayama, Naoyuki Satoh