Patents Examined by Jerome Jackson
  • Patent number: 8969961
    Abstract: A semiconductor body (10) comprises a field-effect transistor (11). The field-effect transistor (11) comprises a drain region (12) of a first conduction type, a source region (13) of the first conduction type, a drift region (16) and a channel region (14) of a second conduction type which is opposite to the first conduction type. The drift region (16) comprises at least two stripes (15, 32) of the first conduction type which extend from the drain region (12) in a direction towards the source region (13). The channel region (14) is arranged between the drift region (16) and the source region (13).
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: March 3, 2015
    Assignee: AMS AG
    Inventors: Jong Mun Park, Verena Vescoli, Rainer Minixhofer
  • Patent number: 8969766
    Abstract: An adaptive heating system for optimizing energy resources while heating a confined area. The adaptive heating system includes at least the following components: a controller, a first heat source, a switch device, and a wireline system. The wireline system is configured to connect the controller to the first heat source, a second heat source, and the switch device. The controller is configured to receive an input from the switch device, determine whether the input indicates a selection of the first heat source or a selection of the second heat source, and then initiate operation of either the first or the second heat source, based on the determined selection. The first heat source is associated with an electric heater and the second heat source is associated with a gas furnace.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: March 3, 2015
    Inventor: Larry McGaugh
  • Patent number: 8963120
    Abstract: An optoelectronic semiconductor component includes a semiconductor layer sequence having at least one active layer, and a photonic crystal that couples radiation having a peak wavelength out of or into the semiconductor layer sequence, wherein the photonic crystal is at a distance from the active layer and formed by superimposition of at least two lattices having mutually different reciprocal lattice constants normalized to the peak wavelength.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: February 24, 2015
    Assignees: OSRAM Opto Semiconductors GmbH, The University Court of the University of St. Andrews
    Inventors: Krister Bergenek, Christopher Wiesmann, Thomas F. Krauss
  • Patent number: 8952535
    Abstract: A semiconductor device including a first insulation film including a first opening reaching a diffusion region of a transistor; a first barrier metal over the diffused region in the first opening; a first conduction layer formed over the first barrier metal in the first opening and formed of a first conductor; a second barrier metal formed over the first conduction layer in the first opening; a second conduction layer formed over the second barrier metal in the first opening and formed of a second conductor; a third barrier metal formed over the first gate electrode in the second opening; a fourth barrier metal formed in the second opening and contacting with the third barrier metal; and a third conduction layer formed of the second conductor contacting with the fourth barrier metal in the second opening.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: February 10, 2015
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Masaki Haneda, Akiyoshi Hatada
  • Patent number: 8946060
    Abstract: A method for fabricating a semiconductor device, the method includes forming a gate stack over a major surface of a substrate. The method further includes recessing the substrate to form source and drain recess cavities adjacent to the gate stack in the substrate. The method further includes selectively growing a strained material in the source and drain recess cavities in the substrate using an LPCVD process, wherein the LPCVD process is performed at a temperature of about 660 to 700° C. and under a pressure of about 13 to 50 Torr, using SiH2Cl2, HCl, GeH4, B2H6, and H2 as reaction gases.
    Type: Grant
    Filed: May 8, 2013
    Date of Patent: February 3, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Hung Cheng, Chii-Horng Li, Tze-Liang Lee
  • Patent number: 8941186
    Abstract: A semiconductor device includes: a first vertical type transistor having a first lower diffusion layer, a first upper diffusion layer, and a gate electrode; a second vertical type transistor having a second lower diffusion layer, a second upper diffusion layer, and a second gate electrode; a gate wiring connected to the first and second gate electrodes; a first wiring connected to the first lower diffusion layer and second upper diffusion layer; and a second wiring connected to the first upper diffusion layer and second lower diffusion layer.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: January 27, 2015
    Assignee: PS4 Luxco S.A.R.L.
    Inventor: Hiroyuki Fujimoto
  • Patent number: 8941191
    Abstract: A radio frequency microelectromechanical (RF MEMS) device can comprise an actuation p-n junction and a sensing p-n junction formed within a semiconductor substrate. The RF MEMS device can be configured to operate in a mode in which an excitation voltage is applied across the actuation p-n junction varying a non-mobile charge within the actuation p-n junction to modulate an electric field acting upon dopant ions and creating electrostatic forces. The electrostatic forces can create a mechanical motion within the actuation p-n junction. The mechanical motion can modulate a depletion capacitance of the sensing p-n junction, thereby creating a motional current. At least one of the p-n junctions can be located at an optimal location to maximize the efficiency of the RF MEMS device at high resonant frequencies.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: January 27, 2015
    Assignee: Cornell University
    Inventors: Eugene Hwang, Sunil Ashok Bhave
  • Patent number: 8936985
    Abstract: A method can include forming a drift region, forming a well region above the drift region, and forming an active trench extending through the well region and into the drift region. The method can include forming a first source region in contact with a first sidewall of the active trench and a second source region in contact with a second sidewall of the active trench. The method also includes forming a charge control trench where the charge control trench is aligned parallel to the active trench and laterally separated from the active trench by a mesa region, and where the portion of the well region is in contact with the charge control trench and excludes any source region. The method also includes forming an oxide along a bottom of the active trench having a thickness greater than a thickness of an oxide along the first sidewall of the active trench.
    Type: Grant
    Filed: March 12, 2012
    Date of Patent: January 20, 2015
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Ashok Challa, Alan Elbanhawy, Dean E. Probst, Steven P. Sapp, Peter H. Wilson, Babak S. Sani, Becky Losee, Robert Herrick, James J. Murphy, Gordon K. Madson, Bruce D. Marchant, Christopher B. Kocon, Debra S. Woolsey
  • Patent number: 8936998
    Abstract: A device is provided with: a first substrate mainly containing silicon dioxide; a second substrate mainly containing silicon, compound semiconductor, silicon dioxide or fluoride; and a bonding functional intermediate layer arranged between the first substrate and the second substrate. The first substrate is bonded to the second substrate thorough room temperature bonding in which a sputtered first surface of the first substrate is contacted with a sputtered second surface of the second substrate via the bonding functional intermediate layer. Here, the material of the bonding functional intermediate layer is selected from among optically transparent materials which are oxide, fluoride, or nitride, the materials being different from the main component of the first substrate and different from the main component of the second substrate.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: January 20, 2015
    Assignees: Mitsubishi Heavy Industries, Ltd., National Institute of Advanced Industrial Science and Technology
    Inventors: Jun Utsumi, Takayuki Goto, Kensuke Ide, Hideki Takagi, Masahiro Funayama
  • Patent number: 8933483
    Abstract: Provided is a semiconductor device capable of reducing a temperature-dependent variation of a current sense ratio and accurately detecting current In the semiconductor device, at least one of an impurity concentration and a thickness of each semiconductor layer is adjusted such that a value calculated by a following equation is less than a predetermined value: [ ? i = 1 n ? ( R Mi × k Mi ) - ? i = 1 n ? ( R Si × k Si ) ] / ? i = 1 n ? ( R Mi × k Mi ) where a temperature-dependent resistance changing rate of an i-th semiconductor layer (i=1 to n) of the main element domain is RMi; a resistance ratio of the i-th semiconductor layer of the main element domain relative to the entire main element domain is kMi; a temperature-dependent resistance changing rate of the i-th semiconductor layer of the sense element domain is RSi; and a resistance ratio of the i-th semiconductor layer of the sense element domain to the entire sense element domain is kSi.
    Type: Grant
    Filed: November 7, 2013
    Date of Patent: January 13, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hidefumi Takaya, Kimimori Hamada, Yuji Nishibe
  • Patent number: 8927380
    Abstract: A circuit configuration and methods for controlling parameters of a bipolar junction transistor (BJT) fabricated on a substrate. A bias voltage is electrically coupled to the substrate and can be adjusted to alter the working parameters of a target BJT.
    Type: Grant
    Filed: February 8, 2012
    Date of Patent: January 6, 2015
    Assignee: International Business Machines Corporation
    Inventors: Jin Cai, Tak H. Ning
  • Patent number: 8927397
    Abstract: A method of fabricating an electronic device includes the following steps. A SOI wafer is provided having a SOI layer over a BOX. At least one first/second set of nanowires and pads are patterned in the SOI layer. A conformal gate dielectric layer is selectively formed surrounding a portion of each of the first set of nanowires that serves as a channel region of a transistor device. A first metal gate stack is formed on the conformal gate dielectric layer surrounding the portion of each of the first set of nanowires that serves as the channel region of the transistor device in a gate all around configuration. A second metal gate stack is formed surrounding a portion of each of the second set of nanowires that serves as a channel region of a diode device in a gate all around configuration.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: January 6, 2015
    Assignee: International Business Machines Corporation
    Inventors: Josephine B. Chang, Isaac Lauer, Chung-Hsun Lin, Jeffrey W. Sleight
  • Patent number: 8921826
    Abstract: A semiconductor device which produces at least 1 W/m2 two photon emission power per area, when operating at one or more temperatures greater than 20 K.
    Type: Grant
    Filed: November 27, 2007
    Date of Patent: December 30, 2014
    Assignee: Technion Research & Development Foundation Limited
    Inventors: Alex Hayat, Pavel Ginzburg, Meir Orenstein
  • Patent number: 8907359
    Abstract: An optoelectronic semiconductor component comprising a semiconductor layer sequence (3) based on a nitride compound semiconductor and containing an n-doped region (4), a p-doped region (8) and an active zone (5) arranged between the n-doped region (4) and the p-doped region (8) is specified. The p-doped region (8) comprises a p-type contact layer (7) composed of InxAlyGa1-x-yN where 0?x?1, 0?y?1 and x+y?1. The p-type contact layer (7) adjoins a connection layer (9) composed of a metal, a metal alloy or a transparent conductive oxide, wherein the p-type contact layer (7) has first domains (1) having a Ga-face orientation and second domains (2) having an N-face orientation at an interface with the connection layer (9).
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: December 9, 2014
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Martin Strassburg, Lutz Höppel, Matthias Peter, Ulrich Zehnder, Tetsuya Taki, Andreas Leber, Rainer Butendeich, Thomas Bauer
  • Patent number: 8906716
    Abstract: Provided is an optical semiconductor device includes: a light-emitting layer having a first main surface, a second main surface opposed to the first main surface, a first electrode and a second electrode which are formed on the second main surface; a fluorescent layer provided on the first main surface; a light-transmissive layer provided on the fluorescent layer and made of a light-transmissive inorganic material; a first metal post provided on the first electrode; a second metal post provided on the second electrode; a sealing layer provided on the second main surface so as to seal in the first and second metal posts with one ends of the respective first and second metal posts exposed; a first metal layer provided on the exposed end of the first metal post; and a second metal layer provided on the exposed end of the second metal post.
    Type: Grant
    Filed: September 11, 2013
    Date of Patent: December 9, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kazuo Shimokawa, Takashi Koyanagawa, Takeshi Miyagi, Akihiko Happoya, Kazuhito Higuchi, Tomoyuki Kitani
  • Patent number: 8901655
    Abstract: A method of fabricating an electronic device includes the following steps. A SOI wafer is provided having a SOI layer over a BOX. At least one first/second set of nanowires and pads are patterned in the SOI layer. A conformal gate dielectric layer is selectively formed surrounding a portion of each of the first set of nanowires that serves as a channel region of a transistor device. A first metal gate stack is formed on the conformal gate dielectric layer surrounding the portion of each of the first set of nanowires that serves as the channel region of the transistor device in a gate all around configuration. A second metal gate stack is formed surrounding a portion of each of the second set of nanowires that serves as a channel region of a diode device in a gate all around configuration.
    Type: Grant
    Filed: August 19, 2013
    Date of Patent: December 2, 2014
    Assignee: International Business Machines Corporation
    Inventors: Josephine B. Chang, Isaac Lauer, Chung-Hsun Lin, Jeffrey W. Sleight
  • Patent number: 8896004
    Abstract: Disclosed are a white LED, which has color reproducibility comparable with that of a cold-cathode tube and improved brightness, and a backlight and a liquid crystal display device comprising the white LED. The white LED comprises at least one light emitting element selected from ultraviolet light emitting diodes, purple light emitting diodes, ultraviolet light emitting lasers, and purple light emitting lasers, and a phosphor layer. The phosphor layer comprises a green phosphor satisfying formula 1, a blue phosphor satisfying formula 2 or 3, and a red phosphor satisfying formula 4 or 5: a trivalent cerium- and terbium-activated rare earth boride phosphor represented by formula 1: M1-x-yCexTbyBO3 wherein M represents at least one element selected from Sc (scandium), Y (yttrium), La (lanthanum), Gd (gadolinium), and Lu (lutetium); and x and y are respective numbers of 0.03<x<0.3 and 0.03<y<0.3; a divalent europium-activated halophosphate phosphor represented by formula 2: (M2, Eu)10(PO4)6.
    Type: Grant
    Filed: April 25, 2006
    Date of Patent: November 25, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Ryo Sakai, Yasuhiro Shirakawa, Hajime Takeuchi, Tsutomu Ishii, Yasumasa Ooya
  • Patent number: 8890260
    Abstract: The present disclosure provides an integrated circuit. The integrated circuit includes a semiconductor substrate; and a passive polysilicon device disposed over the semiconductor substrate. The passive polysilicon device further includes a polysilicon feature; and a plurality of electrodes embedded in the polysilicon feature.
    Type: Grant
    Filed: September 4, 2009
    Date of Patent: November 18, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Harry Hak-Lay Chuang, Kong-Beng Thei, Sheng-Chen Chung, Chiung-Han Yeh, Lee-Wee Teo, Yu-Ying Hsu, Bao-Ru Young
  • Patent number: 8889511
    Abstract: In one general aspect, a method can include forming a shield dielectric layer in a trench in a semiconductor substrate, forming a shield electrode on at least a portion of the shield dielectric layer, and etching the shield dielectric layer so that a portion of the shield dielectric layer is recessed in the trench. The method can include forming a gate dielectric layer on the recessed portion of the shield dielectric layer in the trench, forming a first conductive gate electrode on a first side of the shield electrode and insulated from a first sidewall of the trench by the gate dielectric layer, and forming a second conductive gate electrode on a second side of the shield electrode and insulated from a second sidewall of the trench by the gate dielectric layer.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: November 18, 2014
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Joseph A. Yedinak, Nathan L. Kraft
  • Patent number: 8889554
    Abstract: The present invention provides a method for manufacturing a semiconductor structure, comprising: forming a first contact layer on an exposed active region of a first spacer; forming a second spacer at a region of the first contact layer close to a gate stack to partially cover the exposed active region; forming a second contact layer in the uncovered exposed active region, wherein when a diffusion coefficient of the first contact layer is the same as that of the second contact layer, the first contact layer has a thickness less than that of the second contact layer; and when the diffusion coefficient of the first contact layer is different from that of the second contact layer, the diffusion coefficient of the first contact layer is smaller than that of the second contact layer. Correspondingly, the present invention also provides a semiconductor structure.
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: November 18, 2014
    Assignee: The Institue of Microelectronics Chinese Academy of Science
    Inventors: Haizhou Yin, Wei Jiang, Zhijiong Luo, Huilong Zhu