Patents Examined by Jerry Rahll
  • Patent number: 10795103
    Abstract: Optoelectronic devices with a support member and methods of manufacturing or assembling the same are provided. An example of an optoelectronic device according to the present disclosure includes a substrate and an optical component and an electronic component disposed thereon or therein. The optoelectronic device further includes a ferrule coupled to the optical fiber and an optical socket receiving the ferrule therein. The optoelectronic device includes a support member disposed between the substrate and the optical socket such that the optical socket is spaced from the substrate by the support member.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: October 6, 2020
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Paul Kessler Rosenberg, Sagi Mathai, Michael Renne Ty Tan
  • Patent number: 10795082
    Abstract: Structures that include a Bragg grating and methods of fabricating a structure that includes a Bragg grating. Bragg elements are positioned adjacent to a waveguide. The Bragg elements are separated by grooves that alternate with the Bragg elements. A dielectric layer includes portions positioned to close the grooves to define airgaps. The airgaps are respectively arranged between adjacent pairs of the Bragg elements. The Bragg elements may be used to form the Bragg grating.
    Type: Grant
    Filed: August 14, 2019
    Date of Patent: October 6, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Ajey Poovannummoottil Jacob, Yusheng Bian, Theodore Letavic, Kenneth J. Giewont, Steven M. Shank
  • Patent number: 10795083
    Abstract: Structures for a directional coupler and methods of fabricating a structure for a directional coupler. A first section of a first waveguide core is laterally spaced from a second section of a second waveguide core. A coupling element is arranged either over or under the first section of the first waveguide core and the second section of the second waveguide core. The first and second waveguide cores are comprised of a material having a first refractive index, and the first coupling element is comprised of a material having a second refractive index that is different from the first refractive index. The first coupling element is surrounded by a side surface that overlaps with the first section of the first waveguide core and the second section of the second waveguide core.
    Type: Grant
    Filed: May 30, 2019
    Date of Patent: October 6, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Yusheng Bian, Ajey Poovannummoottil Jacob, Steven M. Shank
  • Patent number: 10788626
    Abstract: A reconfigurable optical ferrule (ROF) carrier mating system is provided. The ROF carrier mating system comprising a reconfigurable carrier adapter comprising an adapter mid-wall comprising a plurality of ferrule mating sleeves, with a first carrier receptacle on a first side of the adapter mid-wall and a second carrier receptacle on a second side of the adapter mid-wall. Each ROF carrier can take on either a serial orientation or a parallel orientation based on the alignment of a plurality of duplex ferrule connectors disposed within each ROF carrier. The plurality of ferrules of the ROF carriers inserted into the first carrier receptacle are configured to mate with the plurality of ferrules of the ROF carriers inserted into the second ferrule carrier receptacle.
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: September 29, 2020
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Kevin B. Leigh, John Norton
  • Patent number: 10782476
    Abstract: The present disclosure relates to a splice-on connector configuration having connector body defining a forward fiber buckling region and a rearward splice encapsulation region. The splice encapsulation region can be filled with curable adhesive. The splice encapsulation region can also function to anchor a fiber optic cable.
    Type: Grant
    Filed: October 16, 2019
    Date of Patent: September 22, 2020
    Assignee: CommScope Technologies LLC
    Inventors: Ponharith Nhep, Yu Lu
  • Patent number: 10782486
    Abstract: A fiber optic connector includes a plug-in unit, a connecting unit, and a sleeving unit. The plug-in unit includes a switch member that is operable to move between a locking position and an adjusting position. The connecting unit includes a surrounding body that is formed with two through grooves. When the switch member is at the adjusting position, the switch member is moved away from of the through grooves and the connecting unit is operable to be separated from the plug-in unit. When the switch member is at the locking position, the switch member is moved into one of the through grooves to prevent separation of the connecting unit from the plug-in unit.
    Type: Grant
    Filed: August 13, 2019
    Date of Patent: September 22, 2020
    Assignee: SHEN ZHEN WONDERWIN TECHNOLOGY CO., LTD.
    Inventor: Yen-Chang Lee
  • Patent number: 10782490
    Abstract: A fiber optic connector includes a connecting unit having a plurality of positioning grooves and a cover unit having a plurality of positioning blocks. The cover unit is operable to rotate relative to the connecting unit between an engaged position, where the positioning blocks are respectively disposed in the of said positioning grooves and are respectively and at least partially aligned with shoulder surfaces in the positioning grooves such that the cover unit is unable to move axially and forwardly relative to the connecting unit, and a separated position, where the positioning blocks are respectively misaligned from the shoulder surfaces to allow the cover unit to move axially and forwardly relative to the connecting unit.
    Type: Grant
    Filed: October 8, 2019
    Date of Patent: September 22, 2020
    Assignee: Amphenol Fiber Optic Technology (Shenzhen) Co., Ltd.
    Inventors: Ling-Hua Zhu, Xing-Fu Mo, Jinan Zhou, Anh Nguyen
  • Patent number: 10782487
    Abstract: A fiber optic cable assembly includes a fiber optic cable and a fiber optic connector. The cable includes a jacket having an elongated transverse cross-sectional profile that defines a major axis and a minor axis. Strength components of the cable are anchored to the connector. The fiber optic connector includes a multi-fiber ferrule defining a major axis that is generally perpendicular to the major axis of the jacket and a minor axis that is generally perpendicular to the minor axis of the jacket. Certain types of connectors include a connector body defining a side opening that extends along a length of the connector body; a multi-fiber ferrule configured for lateral insertion into the connector body through the side opening; and a cover that mounts over the side opening after the multi-fiber ferrule has been inserted into the connector body through the side opening.
    Type: Grant
    Filed: October 11, 2019
    Date of Patent: September 22, 2020
    Assignee: CommScope Technologies LLC
    Inventor: Yu Lu
  • Patent number: 10782496
    Abstract: Embodiments of the present disclosure provide an apparatus and method for manufacturing of optical cable buffer tubes using an emulsion lubricant. In an embodiment, an optical cable includes a plurality of buffer tubes. Each buffer tube includes a bundle of optical fibers comprising an outer surface area, a swellable-thread comprising a hydrophilic base material comprising water, and a layer of silicone contacting at least a part of the outer surface area.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: September 22, 2020
    Assignee: Prysmian S.p.A.
    Inventors: Brian G. Risch, Gavin Lin
  • Patent number: 10775555
    Abstract: The present embodiment relates to an optical fiber line or the like configured by connecting a single-mode optical fiber with a cladding containing fluorine and a large Aeff optical fiber by TEC connection, and a connection state between such two types of optical fibers is set such that a connection loss expressed in dB of a fundamental mode is equal to or less than 55% of an ideal butt loss expressed in dB at a wavelength of 1550 nm.
    Type: Grant
    Filed: May 21, 2019
    Date of Patent: September 15, 2020
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Masato Suzuki, Yoshiaki Tamura, Yoshinori Yamamoto, Takemi Hasegawa, Suguru Takasaki, Saori Kubara
  • Patent number: 10775573
    Abstract: A method for forming an embedded mirror structure is disclosed. The method includes preparing a structure that has a substrate and a waveguide layer on the substrate. The waveguide layer includes a core. Also, the waveguide has a top surface and a cavity side surface that defines a cavity opened at the top surface and aligned to the core. The method further includes coating metal particles on the cavity side surface inside the cavity of the waveguide layer to form a metal particle film on the cavity side surface.
    Type: Grant
    Filed: April 3, 2019
    Date of Patent: September 15, 2020
    Assignee: International Business Machines Corporation
    Inventors: Hsiang Han Hsu, Masao Tokunari, Koji Masuda
  • Patent number: 10775572
    Abstract: Compact ASIC, chip-on-board, flip-chip, interposer, and related packaging techniques are incorporated to minimize the footprint of optoelectronic interconnect devices, including the Optical Data Pipe. In addition, ruggedized packaging techniques are incorporated to increase the durability and application space for optoelectronic interconnect devices, including an Optical Data Pipe.
    Type: Grant
    Filed: May 7, 2018
    Date of Patent: September 15, 2020
    Assignee: Wavefront Research, Inc.
    Inventors: Randall C. Veitch, Thomas W. Stone
  • Patent number: 10775580
    Abstract: The present disclosure relates to a ruggedized/hardened fiber optic connection system designed to reduce cost. In one example, selected features of a fiber optic adapter are integrated with a wall (24) of an enclosure (22). The adapter comprises a sleeve port (26) into which an optical adapter subassembly is inserted. The subassembly comprises a sleeve part (44) which is inserted into the sleeve, a ferrule alignment sleeve (48) which is inserted into the sleeve part, a ferrule (55) with hub which is inserted into the alignment sleeve, and fixing clip (46) securing the ferrule with hub into the alignment sleeve and the sleeve part.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: September 15, 2020
    Assignee: CommScope Connectivity Belgium BVBA
    Inventor: Philippe Coenegracht
  • Patent number: 10775167
    Abstract: Provided is a tilt angle sensor. The tile angle sensor includes a first directional coupler, a second directional coupler, a reference single mode optical fiber, and a sensing single mode optical fiber. An output end of the first directional coupler is connected to a first end of the reference single mode optical fiber and a first end of the sensing single mode optical fiber. A second end of the reference single mode optical fiber and a second end of the sensing single mode optical fiber are connected to an input end of the second directional coupler. A groove having a depth less than or equal to a thickness of a wall of a cladding of the sensing single mode optical fiber is formed on the cladding. The groove is filled and sealed with two liquids of different densities and un-dissolvable with each other, and the two liquids form layers.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: September 15, 2020
    Assignees: BOE TECHNOLOGY GROUP CO., LTD., Beijing BOE Optoelectronics Technology Co., Ltd.
    Inventors: Yu Liu, Ming Zhai, Xiaoliang Fu
  • Patent number: 10768367
    Abstract: The method for manufacturing the heterojunction circuit according to one embodiment of the present disclosure comprises depositing a first electrode on at least a part of a waveguide, moving a semiconductor comprising a second electrode at a lower end thereof onto the first electrode, and depositing a third electrode on an upper end of the semiconductor, wherein the waveguide and the semiconductor comprise different materials. Additionally, the moving step further comprises generating microbubbles by supplying heat to at least a part of the semiconductor, moving the semiconductor on the first electrode by moving the generated microbubbles, and removing the microbubbles by positioning the semiconductor on the first electrode.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: September 8, 2020
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Kyoungsik Yu, Youngho Jung
  • Patent number: 10761281
    Abstract: In one embodiment, a method includes identifying optical transceivers installed in optical module ports at a network device based on input received at electrical interfaces at the network device, identifying at least one optical module port without an optical transceiver installed, determining if a plug is inserted into the optical module port, wherein an electrical signal indicates insertion of the plug into the optical module port, and raising an alarm if the optical module port is open. Insertion of the plug into the optical module port reduces airflow bypass, electromagnetic interference leakage, and contamination without the optical transceiver installed in the optical module port. The plug is also disclosed herein.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: September 1, 2020
    Assignee: CISCO TECHNOLOGY, INC.
    Inventors: Rohit Dev Gupta, Joel Richard Goergen, Chezhian Barathi
  • Patent number: 10750932
    Abstract: An optical component assembly method including shrinking a first end of a heat shrink tube about a first optical component, inserting a loading portion of a loading tube into a second end of the heat shrink tube, radially-inserting a plurality of optical components into a staging portion of the loading tube thereby forming a line of optical components, the staging portion being seamlessly coupled to and integrally-formed with the loading portion, moving the line of optical components from the staging portion into the loading portion, and removing the loading portion from between the line of optical components and the heat shrink tube thereby depositing the line of optical components in the heat shrink tube. The line of optical components is fixed and optically aligned within the heat shrink tube by applying radial pressure, axial pressure and heat to the line of optical components simultaneously.
    Type: Grant
    Filed: June 11, 2019
    Date of Patent: August 25, 2020
    Assignee: STERIS Instrument Management Services, Inc.
    Inventors: Shusheng Ye, Zoltan A. Bodor
  • Patent number: 10754094
    Abstract: A method for producing an optical waveguide by: (a) depositing on a substrate a composition comprising: (i) a poly-siloxane comprising epoxy groups and alkenyl groups, (ii) a silane crosslinker having at least two silicon-hydrogen bonds and (iii) at least one compound comprising an epoxy group and a refractive index of at least 1.49; (b) heating; (c) depositing a second composition comprising: (i) a second polysiloxane comprising epoxy groups and alkenyl groups, and (ii) a second silane crosslinker having at least two silicon-hydrogen bonds; (d) curing by heating; (e) exposing to ultraviolet light through a mask to produce a patterned core layer; (f) heating to evaporate at least a part of the uncured portion of the first composition.
    Type: Grant
    Filed: July 9, 2018
    Date of Patent: August 25, 2020
    Assignees: Dow Global Technologies LLC, Dow Silicones Corporation
    Inventors: Kai Su, Brandon W. Swatowski
  • Patent number: 10754162
    Abstract: A projection apparatus including an image device and an illumination system is provided. The image device is configured to convert a first illumination beam into an image beam. The illumination system includes a light source, a collimating lens element and a light homogenizing element. The light source provides an illumination beam. The illumination beam sequentially passes through the collimating lens element and the light homogenizing element and is transmitted to the image device. The light source includes a solid-state illuminating source array. The solid-state illuminating source array includes a plurality of solid-state illuminating sources arranged in an array. The image beam exits the projection apparatus and is converged to a stop. The stop is located outside the projection apparatus. Moreover, a head-mounted display device including the projection apparatus is also provided. A display image provided by the head-mounted display device has uniform brightness and chrominance.
    Type: Grant
    Filed: April 8, 2019
    Date of Patent: August 25, 2020
    Assignee: Coretronic Corporation
    Inventor: Chuan-Te Cheng
  • Patent number: 10739665
    Abstract: A method and system for using laser-induced structures to direct light to exit the bottom of a leaky mode device, and further to divide leaky mode light into multiple orders, and to implement one or more pulsing/strobing patterns such that a field of view is increased for a viewer, or the view zone is increased for a viewer. A leaky mode device may comprise a substrate, a surface acoustic wave (“SAW”) transducer, a waveguide having a higher refractive index than the substrate, an input region for input light, and laser induced structures such as grating. The SAW transducer may be positioned on a top surface of the substrate, and may be configured to emit a SAW wave to propagate across the substrate. The waveguide may be positioned below the SAW. The input wave region may be configured to couple light onto the waveguide.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: August 11, 2020
    Inventor: Daniel Smalley