Patents Examined by Jerry Rahll
  • Patent number: 10732355
    Abstract: An example apparatus includes an optical fiber, an actuator, and a joint mechanically coupling the actuator to the optical fiber. The joint includes a neck extending along an axis. The optical fiber is threaded through an aperture extending along the axis through the neck. The optical fiber is attached to the joint at a surface of the neck facing the axis. The joint also includes a collar extending along the axis. The actuator is mechanically attached to the joint at an inner surface of the collar facing the axis. The joint also includes a flexural element extending radially from the neck to the collar. During operation, the joint couples a force from the actuator to the optical fiber to vary an orientation of a portion of the optical fiber extending from the neck with respect to the axis.
    Type: Grant
    Filed: October 8, 2019
    Date of Patent: August 4, 2020
    Assignee: Magic Leap, Inc.
    Inventors: Xiaoyang Zhang, Vaibhav Mathur, Michael Robert Johnson, Timothy Mark Dalrymple, Andrew C. Duenner, Albert Daniel Carlomagno
  • Patent number: 10732371
    Abstract: A fiber optic telecommunications device includes a rack for mounting a plurality of chassis, each chassis including a plurality of trays slidably mounted thereon and arranged in a vertically stacked arrangement.
    Type: Grant
    Filed: February 12, 2019
    Date of Patent: August 4, 2020
    Assignee: CommScope Technologies LLC
    Inventors: Brent Campbell, Ryan Kostecka, Paula Lockhart, Scott C. Sievers, Dustin Tichy, Gregory J. Schaible, Jonathan T. Lawson, Oscar Fernando Bran de León
  • Patent number: 10732369
    Abstract: This disclosure is related to a fiber optic distribution system including a telecommunications enclosure. In one aspect, the telecommunications enclosure can include a main body and a cover that together define an interior cavity. A first tray and a second tray can be mounted within the interior cavity. The first tray can be configured to hold a fiber optic splitter and to include cable management features. The second tray can be configured with a termination feature for connecting cables extending from the splitter to cables that can be distributed to individual locations remote from the enclosure, such as individual dwelling units.
    Type: Grant
    Filed: May 23, 2019
    Date of Patent: August 4, 2020
    Assignee: CommScope Technologies LLC
    Inventors: Matthew J. Holmberg, James J. Solheid
  • Patent number: 10729512
    Abstract: A surgical illumination apparatus comprises a fiber optic input, and illuminated surgical instrument, and an optical coupling bracket for coupling the fiber optic input to the illuminated surgical instrument. The coupling bracket comprises an elongate frame having a proximal end, a distal end, and a central channel extending therebetween, wherein the central channel is sized to receive and support optical fibers of the fiber optic input. The proximal end of the bracket is coupled to the fiber optic input, and the distal end of the bracket is coupled to an illumination element of the illuminated surgical instrument. The apparatus may further comprise a shroud disposed around the illumination element that is coupled to the bracket.
    Type: Grant
    Filed: October 14, 2019
    Date of Patent: August 4, 2020
    Assignee: Invuity, Inc.
    Inventors: David Wayne, Alex Vayser, Douglas Rimer, Fernando Erismann, Gaston Tudury, Michael Boutillette, Aaron Weiss, Vladimir Zagatsky
  • Patent number: 10718905
    Abstract: A method for depositing silicon oxynitride film structures is provided that is used to form planar waveguides. These film structures are deposited on substrates and the combination of the substrate and the planar waveguide is used in the formation of optical interposers and subassemblies. The silicon oxynitride film structures are deposited using low thermal budget processes and hydrogen-free oxygen and hydrogen-free nitrogen precursors to produce planar waveguides that exhibit low losses for optical signals transmitted through the waveguide of 1 dB/cm or less. The silicon oxynitride film structures and substrate exhibit low stress levels of less than 20 MPa.
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: July 21, 2020
    Assignee: POET Technologies, Inc.
    Inventors: William Ring, Miroslaw Florjanczyk, Suresh Venkatesan
  • Patent number: 10718898
    Abstract: An optical device comprises first, second and third elements fabricated on a common substrate. The first element comprises an active waveguide structure supporting a first optical mode, the second element comprises a passive waveguide structure supporting a second optical mode, and the third element, at least partly butt coupled to the first element, comprises an intermediate waveguide structure. If the first optical mode differs from the second optical mode by more than a predetermined amount, a tapered waveguide structure in at least one of the second and third elements facilitates efficient adiabatic transformation between the first optical mode and the second optical mode. Mutual alignments of the first, second and third elements are defined using lithographic alignment marks.
    Type: Grant
    Filed: January 23, 2019
    Date of Patent: July 21, 2020
    Assignee: Nexus Photonics LLC
    Inventor: Hyundai Park
  • Patent number: 10712214
    Abstract: A method of monitoring variation in the thrust exerted by at least one buoy exerting traction on an undersea pipe, wherein: 1) the deformation of at least one optical fiber is measured by measuring variation of an optical signal in said fiber extending on the surface or embedded securely in the bulk of at least one of the following support elements: a) the buoy; b) at least a portion of: b1) the length of the tubular wall of the pipe or b2) an anticorrosion coating or a thermally insulating material fastened on the surface of said pipe, on which said buoy exerts traction, and c) an abutment part secured to said pipe or buoy, and on which said buoy exerts said thrust; 2) a variation of said thrust exerted by said buoy is determined as a function of said variation of the optical signal.
    Type: Grant
    Filed: October 18, 2017
    Date of Patent: July 14, 2020
    Assignee: Saipem S.A.
    Inventors: Taoufik Majdoub, François-Régis Pionetti, Axel Sundermann, Jalil Agoumi
  • Patent number: 10712506
    Abstract: A fiber optic connector along with a tool allows for the changing of the polarity of the fiber optic connector. Keys are installed in both the top and the bottom of the fiber optic connector, one in a first position and the other in a second position. Using the tool in one back-and-forth motion, the polarity of the fiber optic connector change be changed. The keys may be colored differently to identify the polarity of the fiber optic connector.
    Type: Grant
    Filed: October 18, 2018
    Date of Patent: July 14, 2020
    Assignee: US Conec
    Inventors: Darrell R. Childers, Craig M. Conrad, Jason Higley, Jillcha F. Wakjira, Myron W. Yount
  • Patent number: 10712516
    Abstract: An optical connection terminal for a fiber optic communications network includes a base, the base comprising an exterior wall. The terminal further includes a cover connected to the base, wherein an interior cavity is defined between the base and the cover. The cover includes a bottom panel, a first end wall, a second opposing end wall, a first sidewall, and a second opposing sidewall, wherein the bottom panel extends between the first end wall and opposing second end wall and between the first side wall and second opposing sidewall. The terminal further includes an exterior channel defined in the bottom panel, and a stub cable port defined in the bottom panel within the exterior channel of the cover. The terminal further includes a plurality of connector ports defined in the exterior wall of the base.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: July 14, 2020
    Assignee: AFL Telecommunications LLC
    Inventors: Wink Courchaine, Roger Vaughn, Vahid Ebrahimi
  • Patent number: 10712507
    Abstract: A fiber optic connector along with a tool allows for the changing of the polarity of the fiber optic connector. Keys may be installed in both the top and the bottom of the fiber optic connector, one in a first position and the other in a second position. Using the tool in one back-and-forth motion, the polarity of the fiber optic connector can be changed. The keys have a configuration that resist an incorrect insertion and provide better retention of the keys in the correct configuration due to a better retention force.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: July 14, 2020
    Assignee: US Conec, Ltd
    Inventors: Darrell R. Childers, Craig M. Conrad, Jason Higley, Jillcha F. Wakjira
  • Patent number: 10705294
    Abstract: An optical waveguide termination device includes a waveguide and metal vias surrounding an end portion of the waveguide. The end portion of the waveguide has a transverse cross-sectional area that decreases towards its distal end. The metal vias are orthogonal to a same plane, with the same plane being orthogonal to the transverse cross-section. The metal vias absorb light originating from the end portion when a light signal propagates through the waveguide, and the metal vias and the end portion provide that an effective index of an optical mode to be propagated through the waveguide progressively varies in the end portion. Additional metal vias may be present along the waveguide upstream of the end portion, with the additional metal vias bordering the waveguide upstream of the end portion providing that the effective index of an optical mode to be propagated through the waveguide varies progressively toward the end portion.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: July 7, 2020
    Assignee: STMicroelectronics (Crolles 2) SAS
    Inventors: Sylvain Guerber, Charles Baudot
  • Patent number: 10702161
    Abstract: A medical instrument is described that includes an optical source, an optical fiber, and a waveguide patterned upon a substrate. The optical fiber receives radiation from the optical source and includes a first segment and a second segment. The second segment is rotated about an optical axis relative to the first segment. The waveguide receives radiation from the optical source and guides a beam of radiation. The waveguide includes a first waveguide segment designed to impart a first differential group delay on the beam of radiation and a second waveguide segment designed to impart a second differential group delay on the beam of radiation. A sum of the first differential group delay and the second differential group delay is substantially zero.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: July 7, 2020
    Assignee: Medlumics S.L.
    Inventors: Matthieu Duperron, Juan Sancho Durá, José Luis Rubio Guivernau, Sara María Más Gómez
  • Patent number: 10698153
    Abstract: When a grating is inscribed in a section of optical fiber through a coating of the optical fiber, using a light modulation mask to modulate the light beam that writes the grating, a fluid can be situated between the section of optical fiber and the back side of a mask component carrying the light modulation mask (e.g., on its front side) to reduce the refractive-index discontinuity encountered at the surface of the coating. In various embodiments, rather than running the fiber through a vessel containing the fluid, the fluid is run across the back side of the mask component or retained by capillary action between the fiber section and the mask component.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: June 30, 2020
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Brooks Childers, Megan Patoskie
  • Patent number: 10690853
    Abstract: A III-V optoelectronic light emitting device is epitaxially formed on a semiconductor on insulator substrate over a buried waveguide core. The device is optically coupled to the underlying waveguide core. A MOSFET device is formed on a semiconductor substrate beneath the insulator that contains the waveguide core.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: June 23, 2020
    Assignee: International Business Machines Corporation
    Inventors: Ning Li, Devendra K. Sadana, Christopher Heidelberger
  • Patent number: 10690851
    Abstract: Many embodiments in accordance with the invention are directed towards waveguides implementing birefringence control. In some embodiments, the waveguide includes a birefringent grating layer and a birefringence control layer. In further embodiments, the birefringence control layer is compact and efficient. Such structures can be utilized for various applications, including but not limited to: compensating for polarization related losses in holographic waveguides; providing three-dimensional LC director alignment in waveguides based on Bragg gratings; and spatially varying angular/spectral bandwidth for homogenizing the output from a waveguide. In some embodiments, a polarization-maintaining, wide-angle, and high-reflection waveguide cladding with polarization compensation is implemented for grating birefringence. In several embodiments, a thin polarization control layer is implemented for providing either quarter wave or half wave retardation.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: June 23, 2020
    Assignee: DigiLens Inc.
    Inventors: Jonathan David Waldern, Milan Momcilo Popovich, Alastair John Grant
  • Patent number: 10690947
    Abstract: In one aspect, a photonic device includes a first region having a first doping type, where the first region is divided into an upper portion made of silicon-germanium and a lower portion made of silicon. The device further includes a second region having a second doping type. The first region and the second region contact to form a vertical PN junction.
    Type: Grant
    Filed: January 23, 2019
    Date of Patent: June 23, 2020
    Assignee: STMICROELECTRONICS (CROLLES 2) SAS
    Inventors: Stephane Monfray, Frédéric Boeuf
  • Patent number: 10690871
    Abstract: A fiber optic cable assembly includes an elongate housing, a plurality of fiber optic cables placed inside the housing and extending longitudinally, and acoustic isolating material placed inside the housing and extending longitudinally. The acoustic isolating material includes a plurality of outwardly radially extending arms extending from a center of the housing towards a circumference of the housing. The plurality of arms divides a space inside the housing into a plurality of acoustically isolated sections. Each acoustically isolated section extends longitudinally. Each acoustically isolated section includes at least one of the plurality of fiber optic cables. Each acoustically isolated section is acoustically insulated from remaining sections of the plurality of acoustically isolated sections. A surface of the acoustic isolating material of each acoustically isolated section is covered by acoustic reflective material.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: June 23, 2020
    Assignee: Saudi Arabian Oil Company
    Inventor: Frode Hveding
  • Patent number: 10690845
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to three dimensional (3D) optical interconnect structures and methods of manufacture. The structure includes: a first structure having a grating coupler and a first optical waveguide structure; and a second structure having a second optical waveguide structure in alignment with the first optical waveguide structure and which has a modal effective index that matches to the first optical waveguide structure.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: June 23, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Ajey Poovannummoottil Jacob, Abu Thomas, Yusheng Bian
  • Patent number: 10684429
    Abstract: An optical component including an optical device, a substrate, and a lens component is disclosed. The substrate has a mounting surface on which the optical device is mounted and at least two reference marks are provided. The lens component is disposed on the substrate. The lens component includes a first surface, a second surface, a lens, at least two first transmission regions formed on the first surface, and at least two second transmission regions formed in positions facing the first transmission regions on the second surface. Each of the second transmission regions is smaller than the corresponding first transmission region. The lens component is attached to the substrate so that each of the second transmission regions is located within the corresponding first transmission region and each of the reference marks is located within the corresponding second transmission region when viewed along an observation direction orthogonal to the first surface.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: June 16, 2020
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Takeshi Inoue, Taisuke Nagasaki, Toshihisa Yokochi
  • Patent number: 10684438
    Abstract: A device for rearranging optical fibers has a proximal and distal ends. The ends have openings therein to allow optical fibers to pass therethrough. The openings in the distal end have a width that is less than twice the optical fiber's diameter. Dividers separate the distal end openings and have a projection that narrows the distal openings to prevent the optical fibers from accidentally moving out of the openings. A lid is also provided to assist with organization and compression of the optical fibers.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: June 16, 2020
    Assignee: US Conec, Ltd.
    Inventors: Craig M. Conrad, Darrell R. Childers, Brian J. Gimbel, Brian Pruett, Myron W. Yount