Patents Examined by Jessica Stultz
  • Patent number: 9385218
    Abstract: A semiconductor structure is provided that includes a fin structure of, from bottom to top, a semiconductor punch through stop (PTS) doping fin portion, a dielectric material fin portion, and a topmost semiconductor fin portion that is present on a wider semiconductor fin base. A functional gate structure straddles the semiconductor fin structure. Portions of the wider semiconductor fin base that are not located directly beneath the fin structure of the present application and that are not covered by the functional gate structure can be used as an area for epitaxial growth of source/drain structures. The wide semiconductor fin base improves source/drain epitaxy for better dopant incorporation and strain enhancement.
    Type: Grant
    Filed: April 23, 2015
    Date of Patent: July 5, 2016
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Pouya Hashemi, Alexander Reznicek
  • Patent number: 9378968
    Abstract: A method for planarizing a semiconductor device is provided. The method includes steps hereinafter. A substrate is provided with a first dielectric layer covering at least one electrode structure formed thereon. A chemical-mechanical polishing (CMP) process is performed on the first dielectric layer until the at least one electrode structure is exposed. A second dielectric layer is deposited covering the at least one electrode structure and the first dielectric layer. An etching-back process is performed on the second dielectric layer until the at least one electrode structure is exposed.
    Type: Grant
    Filed: September 2, 2014
    Date of Patent: June 28, 2016
    Assignee: UNITED MICROELECTRONICS CORPORATION
    Inventors: Yi-Ching Wu, Horng-Bor Lu, Yung-Chieh Kuo
  • Patent number: 9379517
    Abstract: A radiation-emitting component is specified, having a metallic carrier body (1), which comprises at least two connection locations (1a, 1b) for making electrical contact with the component, a laser diode chip (2), which is fixed to the metallic carrier body (1) and is electrically conductively connected to the at least two connection locations (1a, 1b), a housing (3), which surrounds the metallic carrier body (1) in places, wherein the housing (3) is formed with a plastic, the connection locations (1a, 1b) extend in each case at least in places along a bottom face (3a) and a side face (3b) of the housing (3), said side face running transversely with respect to the bottom face, and the component is surface-mountable by means of the connection locations (1a, 1b) in such a way that the bottom face (3a) or the side face (3b) forms a mounting face of the component.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: June 28, 2016
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Andreas Wojcik, Josip Maric, Martin Haushalter, Frank Möllmer
  • Patent number: 9366793
    Abstract: A circularly polarizing plate includes a polarizing film, a first optically anisotropic layer, and a second optically anisotropic layer in this order, in which the first optically anisotropic layer contains a twisted aligned liquid crystal compound of which a helical axis is a thickness direction thereof, a helix angle of the liquid crystal compound is 28.6±10°, an absorption axis of the polarizing film and an in-plane slow axis of the second optically anisotropic layer are parallel or orthogonal to each other, ?nd and ReB(550) respectively fall in predetermined value ranges. The circularly polarizing plate can sufficiently suppress the mixing of black with other colors in a front direction when being stuck on a display apparatus. A retardation plate used for the circularly polarizing plate and an organic EL display apparatus that have the circularly polarizing plate are also provided.
    Type: Grant
    Filed: September 22, 2015
    Date of Patent: June 14, 2016
    Assignee: FUJIFILM CORPORATION
    Inventors: Yukito Saitoh, Hiroshi Sato, Mitsuyoshi Ichihashi
  • Patent number: 9368565
    Abstract: A method is provided for manufacturing a semiconductor device with a metal film resistor structure. The method includes providing an insulation layer on the semiconductor device. A lower copper interconnect is formed in the insulation layer. The method also includes forming a cap layer on the insulation layer and the lower copper interconnect and etching the cap layer based on a single photolithography mask to form a window exposing portion of the lower copper interconnect and portion of the insulation layer. Further, the method includes forming a metal film layer on the cap layer and inside the window such that exposed portion of the lower copper interconnect is connected with part of the metal film layer within the window. The method also includes performing a chemical mechanical polishing (CMP) process to form a metal film resistor based on the metal film layer. The metal film resistor is connected with the portion of the lower copper interconnect.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: June 14, 2016
    Assignee: SHANGHAI IC R & D CENTER CO., LTD.
    Inventors: Qingyun Zuo, Xiaoxu Kang, Shaohai Zeng
  • Patent number: 9356135
    Abstract: To provide a semiconductor device capable of suppressing a reduction in breakdown voltage by suppressing a change in dimensions of a double RESURF structure, and a method of manufacturing the same. In the semiconductor device, an upper RESURF region is formed so as to contact with a first buried region on a side of the one main surface within a semiconductor substrate. The semiconductor substrate has a field oxide formed so as to reach the upper RESURF region on the one main surface. The semiconductor substrate includes a second conductivity type body region formed so as to contact with the upper RESURF region on a side of the one main surface and so as to neighbor the field oxide within the semiconductor substrate.
    Type: Grant
    Filed: January 26, 2015
    Date of Patent: May 31, 2016
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventors: Kosuke Yoshida, Tetsuya Nitta
  • Patent number: 9356428
    Abstract: A surface emitting laser in which a plurality of nitride semiconductor layers including a lower reflector, a plurality of active layers causing a gain by current injection, and an upper reflector are provided on a substrate, includes an n-type spacer layer formed between the lower reflector and an active layer closest to the lower reflector in the plurality of active layers, a p-type spacer layer formed between the upper reflector and an active layer closest to the upper reflector in the plurality of active layers, and an intermediate layer arranged between the plurality of active layers. The intermediate layer is configured from an Mg-doped layer including at least Mg, and a nitride semiconductor layer including In, and the Mg-doped layer and the nitride semiconductor layer including In are provided in that order from a side of the substrate.
    Type: Grant
    Filed: October 30, 2013
    Date of Patent: May 31, 2016
    Assignee: Canon Kabushiki Kaisha
    Inventor: Takeshi Kawashima
  • Patent number: 9356429
    Abstract: A quantum cascade laser includes a substrate having first, second, third, and fourth regions; a stacked semiconductor layer including n-type lower and upper conductive layers, a core layer having a mesa structure, and a cladding layer; first and second buried layers disposed on side surfaces of the core layer and above the substrate; a first electrode disposed on the upper conductive layer above the first region; and a second electrode disposed on the lower conductive layer above the fourth region. The core layer is disposed on the lower conductive layer above the second region. The upper conductive layer is disposed on the first buried layer and the core layer. The cladding layer is disposed on the upper conductive layer above the second region. The substrate and the cladding layer are formed of an undoped or semi-insulating semiconductor. The first and second buried layers are formed of a semi-insulating semiconductor.
    Type: Grant
    Filed: February 28, 2014
    Date of Patent: May 31, 2016
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: Jun-ichi Hashimoto
  • Patent number: 9350139
    Abstract: A vertical-cavity surface-emitting laser diode includes: a first resonator that has a plurality of semiconductor layers comprising a first current narrowing structure having a first conductive region and a first non-conductor region; a first electrode that supplies electric power to drive the first resonator; a second resonator that has a plurality of semiconductor layers comprising a second current narrowing structure having a second conductive region and a second non-conductive region and that is formed side by side with the first resonator, the second current narrowing structure being formed in same current narrowing layer as the layer where the first current narrowing structure is formed; and a coupling portion as defined herein; and an equivalent refractive index of the coupling portion is smaller than an equivalent refractive index of each of the first resonator and the second resonator.
    Type: Grant
    Filed: August 5, 2014
    Date of Patent: May 24, 2016
    Assignees: TOKYO INSTITUTE OF TECHNOLOGY, FUJI XEROX CO., LTD.
    Inventors: Fumio Koyama, Hamed Dalir, Takashi Kondo, Naoki Jogan, Kazutaka Takeda, Hideo Nakayama
  • Patent number: 9343866
    Abstract: An optical pumping structure for lasers includes: an active medium in the form of a cylindrical rod with a circular cross-section, said rod being inserted at its ends into two rings made of a thermally conductive material; at least three stacks of pumping diode strips arranged in the form of a star around the rod; and a support temperature-regulated by a Peltier-effect module. The rings are in contact with the support, and a stack of diodes, called bottom stack, being situated between the rod and the support, and the structure comprises, for each other stack, a thermal conduction block forming a support for said stack, these blocks being mounted on the cooled support and not being in contact with one another or with the rings.
    Type: Grant
    Filed: July 6, 2009
    Date of Patent: May 17, 2016
    Assignee: Thales
    Inventors: François Lureau, Pascal Rousseau, Marc Renaud, Alain Feral, Alain Nicolini
  • Patent number: 9343873
    Abstract: It is the object of the present invention to specify a light source with high efficiency and high eye safety at the same time. For this purpose, the active layer (10), the first cladding layer (14), the first waveguide layer (12), the second waveguide layer (16), and the second cladding layer (18) should be designed such that 0.01 ?m?dwL?1.0 ?m and ?n?0.04, where dwL is the sum total of the layer thickness of the first waveguide layer (12), the layer thickness of the active layer (10), and the layer thickness of the second waveguide layer (16) and ?n is a maximum of the refractive index difference between the first cladding layer (14) and the first waveguide layer (12) and the refractive index difference between the second waveguide layer (16) and the second cladding layer (18).
    Type: Grant
    Filed: September 12, 2011
    Date of Patent: May 17, 2016
    Assignee: Forschungsverbund Berlin E.V.
    Inventors: Paul Crump, Goetz Erbert, Hans Wenzel
  • Patent number: 9337616
    Abstract: Embodiments for driving a laser diode includes generating a bias current having a duty cycle that is less than 100%. The current level of the bias current is insufficient to turn on the laser diode. A drive current is generated and combined with the bias current to turn on the laser diode almost instantly.
    Type: Grant
    Filed: June 30, 2014
    Date of Patent: May 10, 2016
    Assignee: IXYS Corporation
    Inventor: James Budai
  • Patent number: 9331163
    Abstract: A field effect transistor having a diamond gate electrode and a process for forming the same. In some embodiments, the device is an AlGaN/GaN high-electron-mobility transistor (HEMT). The diamond gate electrode is formed so that it directly contacts the barrier layer. In some embodiments, the diamond gate electrode is formed from boron-doped nanocrystalline diamond (NCD), while in other embodiments, the diamond gate electrode is formed from single crystal diamond.
    Type: Grant
    Filed: August 28, 2014
    Date of Patent: May 3, 2016
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Andrew D. Koehler, Travis J. Anderson, Marko J. Tadjer, Tatyana I. Feygelson, Karl D. Hobart
  • Patent number: 9325154
    Abstract: The present invention relates to a wavelength-tunable laser apparatus which can measure a wavelength in a wavelength-tunable laser diode package structure for dense wavelength division multiplexing (DWDM) having a transistor outline (TO) type appearance.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: April 26, 2016
    Assignee: PHOVEL. CO. LTD
    Inventor: Jeong Soo Kim
  • Patent number: 9318866
    Abstract: A plasmonic laser device has resonant nanocavities filled with a gain medium containing an organic dye. The resonant plasmon frequencies of the nanocavities are tuned to align with both the absorption and emission spectra of the dye. Variables in the system include the nature of the dye and the wavelength of its absorption and emission, the wavelength of the pumping radiation, and the resonance frequencies of the nanocavities. In addition the pumping frequency of the dye is selected to be close to the absorption maximum.
    Type: Grant
    Filed: February 21, 2014
    Date of Patent: April 19, 2016
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Mihail Bora, Tiziana C. Bond
  • Patent number: 9318671
    Abstract: An LED package and method for LED packaging is disclosed. In one embodiment, an LED package includes a carrier substrate having a predefined surface area, an LED device bonded to the carrier substrate, the LED device having a footprint area of at least fifty percent of the predefined surface area of the carrier substrate, and an encapsulant lens having a top surface inclined inwardly at an angle in the range of about 10° to about 140°. In one embodiment, the top surface of the encapsulant lens layer has a concave cone shape. In one embodiment, a wafer level packaging process includes forming an encapsulant lens layer portion having a top surface inclined inwardly at an angle in the range of about 10° to about 140° on each of a plurality of LED devices bonded to a carrier substrate wafer.
    Type: Grant
    Filed: April 18, 2014
    Date of Patent: April 19, 2016
    Assignee: Toshiba Corporation
    Inventors: Kai Liu, Chao-Kun Lin
  • Patent number: 9312268
    Abstract: Integrated circuits and methods for producing the same are provided. A method for producing an integrated circuit includes forming a first and second fin overlying a substrate, where the first and second fins intersect at a fin intersection. The first fin has a first fin left end. A tunnel dielectric and a floating gate are formed adjacent to the first fin with the tunnel dielectric between the floating gate and the first fin. An interpoly dielectric is formed adjacent to the floating gate, and a control gate is formed adjacent to the interpoly dielectric such that the interpoly dielectric is between the floating gate and the control gate. The control gate, interpoly dielectric, floating gate, and the tunnel dielectric are removed from over the first fin except for at a floating gate position between the first fin left end and the fin intersection.
    Type: Grant
    Filed: September 2, 2014
    Date of Patent: April 12, 2016
    Assignee: GLOBALFOUNDRIES SINGAPORE PTE. LTD.
    Inventors: Eng Huat Toh, Shyue Seng Jason Tan, Elgin Kiok Boone Quek, Danny Shum
  • Patent number: 9300109
    Abstract: A servo system includes multiple servo channels being driven by a common error signal. Each channel has a controller that receives an error signal and provides a drive signal to a driver. The servo channels are arranged serially, with a drive signal from one controller forming the error signal for a downstream controller. As a result, the downstream controller does not attempt to correct for phase error directly, but instead attempts to keep the upstream driver at or near its operational midpoint. The servo channels can be arranged in order of decreasing controller bandwidth, from fastest to slowest. In contrast with a parallel configuration, in which servo channels all simultaneously receive a common error signal, the serial configuration can allow each controller to use its full bandwidth, can eliminate crosstalk between servo channels, and can prevent saturation of upstream drive signals.
    Type: Grant
    Filed: January 13, 2014
    Date of Patent: March 29, 2016
    Assignee: Raytheon Company
    Inventors: Kevin Knabe, Andrew N. Daniele, Victor Leyva
  • Patent number: 9299862
    Abstract: A device package method and structure thereof. The method includes steps of: providing a base and a cover, and placing a sensing device on the bottom of cavity base; placing sealant between the cover and edge part of the base, and then covering the cover on the base; irradiating a laser on the edge part for melting the sealant, so as to bond the cover and edge part; and enabling the sealed space formed between the cover and the cavity base to be in vacuum. Therefore, sensing element with high sensitivity can be packaged and manufactured efficiently.
    Type: Grant
    Filed: May 20, 2014
    Date of Patent: March 29, 2016
    Assignee: Challentech International Corporation
    Inventors: Chung-I Chiang, Yun-Kuei Chiu
  • Patent number: 9281286
    Abstract: Microelectronic packages and methods for fabricating microelectronic packages having texturized solder pads, which can improve solder joint reliability, are provided. In one embodiment, the method includes forming a texturized dielectric region having a texture pattern, such as a hatch pattern, in an under-pad dielectric layer. A texturized solder pad is produced over the texturized dielectric region. The texturized solder pad has a solder contact surface to which the texture pattern is transferred such that the area of the solder contact surface is increased relative to a non-texturized solder pad of equivalent dimensions.
    Type: Grant
    Filed: August 27, 2014
    Date of Patent: March 8, 2016
    Assignee: FREESCALE SEMICONDUCTOR INC.
    Inventors: Weng F. Yap, Alan J. Magnus