Patents Examined by John Hevey
  • Patent number: 12103074
    Abstract: Some variations provide an additively manufactured article comprising a first region and a second region, wherein the first region is a solid region or a porous region, wherein the second region has a pore size larger than the first-region pore size, and wherein the first-region average permeability is lower than the second-region average permeability. Some variations provide a co-sintering method of making an architected material with regions having different permeabilities, in which different additive-manufacturing process parameters are applied to distinct regions of the structure. Other variations provide a wall-pinning method of making an architected material with regions having different permeabilities, in which additive-manufacturing process parameters are selected to sinter pinned feedstock powder between solid walls. Engineered structures with controlled permeability, integrated manifolds, and arbitrary geometries are disclosed, without the requirement of complex manufacturing.
    Type: Grant
    Filed: March 24, 2022
    Date of Patent: October 1, 2024
    Assignee: HRL Laboratories, LLC
    Inventors: John H. Martin, Brennan Yahata, Darby Laplant, Christopher Roper
  • Patent number: 12103113
    Abstract: The present disclosure relates to the field of brazing material technologies, and particularly to a copper-phosphorus brazing wire for brazing a copper alloy spectacle frame as well as a preparing method and system thereof. The copper-phosphorus brazing wire for brazing a copper alloy spectacle frame includes components with following mass percentage, 87.1%˜91.4% of Cu, 1.5%˜2.6% of Ag, 5.9%˜8.4% of P, 0.2%˜0.42% of Al and 0.8%˜1.68% of Si. For the copper-phosphorus brazing wire according to the present disclosure, through coordination and cooperation of the components, impurity content is low and joint strength is high in a welding process; a mass ratio of the Si to the Al is a constant value, and a dense oxide film may be formed on a surface of a molten pool to hinder volatilization of Zn in a base material.
    Type: Grant
    Filed: February 14, 2023
    Date of Patent: October 1, 2024
    Assignee: ZHENGZHOU RESEARCH INSTITUTE OF MECHANICAL ENGINEERING CO., LTD.
    Inventors: Yafang Cheng, Junlan Huang, Xian Dong, Yanhong Guo, Yong Li, Yinyin Pei, Quanbin Lu, Bowen Dong, Hangyan Xue
  • Patent number: 12097557
    Abstract: A method and a system for manufacturing a structure includes the steps of: (a) supplying a mixture consisting a plurality of primitive materials at a target spot; (b) melting and solidifying the mixture disposed at the target spot to form a portion of a metallic structure consisting of an alloy of the plurality of the primitive materials; and (c) repeating steps (a) and (b) at a plurality of target spots in a three-dimensional space to produce the metallic structure of the alloy.
    Type: Grant
    Filed: September 4, 2020
    Date of Patent: September 24, 2024
    Assignee: City University of Hong Kong
    Inventors: Chain Tsuan Liu, Tianlong Zhang
  • Patent number: 12091736
    Abstract: The disclosure discloses a spinning process of a magnesium alloy wheel hub, which comprises the following steps: step 1, heating a magnesium alloy bar at 350-430° C. and keeping the temperature for 20 minutes; step 2, initially forging and forming on the bar under a forging press, wherein the forging down-pressing speed is 6-15 mm/s; step 3, finally forging and forming on the bar under a forging press, wherein the forging down-pressing speed is 5-8 mm/s; step 4, stress relief annealing on the final forged magnesium alloy blank; step 5, solid dissolving on the annealed magnesium alloy blank; step 6, taking out the solid-dissolved blank and directly spinning by a spinning machine; step 7, heating treatment and aging treatment. The magnesium alloy wheel hub with excellent performance is obtained by the process, and the spinning process and processing efficiency are greatly improved.
    Type: Grant
    Filed: January 14, 2022
    Date of Patent: September 17, 2024
    Assignee: CITIC Dicastal Co., Ltd.
    Inventors: Lixin Huang, Zuo Xu, Meng Li, Shiwen Xu, Liguang Xie, Lijun Zhang
  • Patent number: 12084745
    Abstract: A copper alloy powder is a copper alloy powder for additive manufacturing. The copper alloy powder contains more than 1.00 mass % and not more than 2.80 mass % of chromium, and a balance of copper. A method for producing an additively-manufactured article includes a first step of preparing a copper alloy powder containing more than 1.00 mass % and not more than 2.80 mass % of chromium and a balance of copper and a second step of producing the additively-manufactured article from the copper alloy powder, and the additively-manufactured article is produced such that forming a powder layer including the copper alloy powder, and solidifying the copper alloy powder at a predetermined position in the powder layer to form a shaped layer are sequentially repeated to stack such shaped layers to thus produce the additively-manufactured article.
    Type: Grant
    Filed: March 4, 2021
    Date of Patent: September 10, 2024
    Assignees: DAIHEN CORPORATION, Osaka Research Institute of Industrial Science and Technology
    Inventors: Ryusuke Tsubota, Yohei Oka, Akira Okamoto, Takayuki Nakamoto, Takahiro Sugahara, Naruaki Shinomiya, Mamoru Takemura, Sohei Uchida
  • Patent number: 12076780
    Abstract: A mold construction system is presented for use in additive manufacturing of a metal object. The system comprises: at least one mold provision device controllably operable to form one or more mold regions defining one or more respective object regions in a production layer, and configured to receive molten metal deposited to each object region; and a control system operating said at least one mold provision device in accordance with a predetermined building plan. The mold provision device is controllably operable, in accordance with said predetermined building plan, to create each mold region, in each production layer, with one or more metal-facing zones and one or more metal-nonadjacent zones around the metal-facing zone. Each metal-facing zone is configured to define a cavity forming the object region to receive the molten metal therein, and is configured with higher compressibility relatively to at least a sub-zone of the metal-nonadjacent zone.
    Type: Grant
    Filed: November 9, 2022
    Date of Patent: September 3, 2024
    Assignee: Magnus Metal Ltd.
    Inventors: Roi Levi, Hani Farran, Valeriya Frid Zaid
  • Patent number: 12060627
    Abstract: High entropy alloys (HEAs) are provided, which exhibit hard magnetic properties, including increased saturation magnetization, improved coercivity, and thermal stability at temperatures exceeding about 200° C. Methods of making the HEAs are also provided, as well as methods for using the HEAs, particularly in extreme environments.
    Type: Grant
    Filed: October 28, 2021
    Date of Patent: August 13, 2024
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Suok-Min Na, Nicholas J. Jones, Paul K. Lambert
  • Patent number: 12053819
    Abstract: A powder metal material for additive manufacturing contains: (A) a non-magnetic steel powder which is free of nitrogen; and (B) a ferrovanadium nitride powder, and a particle size of the component (B) is 15.0 ?m?D50?25.0 ?m in terms of volume average particle size, and a content of the component (B) is 0.3 mass % to 3.0 mass % with respect to a total amount of the powder metal material.
    Type: Grant
    Filed: March 8, 2023
    Date of Patent: August 6, 2024
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Masaki Shinkawa, Kazuo Kikawa
  • Patent number: 12049690
    Abstract: There are provided an inexpensive copper alloy plate having excellent bending workability, excellent stress corrosion cracking resistance and excellent stress relaxation resistance while maintaining the high strength thereof, and a method for producing the same. The copper alloy plate has a chemical composition which contains 17 to 32% by weight of zinc, 0.1 to 4.5% by weight of tin, 0.5 to 2.5% by weight of silicon, 0.01 to 0.3% by weight of phosphorus and the balance being copper and unavoidable impurities, the total of the content of silicon and six times as much as the content of phosphorus being 1% by weight or more, the copper alloy plate having a crystal orientation wherein I{220}/I{420} in the range of from 2.5 to 8.0 assuming that the X-ray diffraction intensity on {220} crystal plane on the plate surface of the copper alloy plate is I{220} and that the X-ray diffraction intensity on {420} crystal plane thereon is I{420}.
    Type: Grant
    Filed: January 30, 2020
    Date of Patent: July 30, 2024
    Assignee: DOWA METALTECH CO., LTD.
    Inventors: Kazuki Yoshida, Takanobu Sugimoto, Tomotsugu Aoyama, Hiroto Narieda
  • Patent number: 12043876
    Abstract: A steel sheet having a specified chemical composition and a method for producing the steel sheet. The steel sheet has a microstructure comprising ferrite: 5% or less, and at least one of upper bainite, fresh martensite, tempered martensite, lower bainite, and retained ?: 95% to 100%, and retained ?: 5% to 20%. Retained ?UB has a specified area percentage S?UB, retained ?LB has a specified distribution number N?LB, and at least one of (i) fresh martensite has a specified equivalent circular grain diameter and aspect ratio and (ii) retained ? grains has a specified equivalent circular grain diameter and aspect ratio.
    Type: Grant
    Filed: October 16, 2019
    Date of Patent: July 23, 2024
    Assignee: JFE STEEL CORPORATION
    Inventors: Yoshihiko Ono, Junya Tobata, Hiroyuki Akimoto, Yoichiro Matsui, Shinjiro Kaneko
  • Patent number: 12031579
    Abstract: A sliding member includes a metal substrate and a sliding layer formed on one surface of the metal substrate. The sliding layer has a matrix phase containing Cu and Sn and hard particles dispersed in the matrix phase and containing a Laves phase constituted of a composition of Co, Mo and Si.
    Type: Grant
    Filed: November 1, 2021
    Date of Patent: July 9, 2024
    Assignee: SENJU METAL INDUSTRY CO., LTD.
    Inventors: Naoki Sato, Toshio Hakuto, Takashi Akagawa, Yuji Kawamata, Ryoichi Suzuki, Takashi Saito, Tadashi Oshima, Hajime Kato
  • Patent number: 12005636
    Abstract: An additive manufacturing device performs manufacturing of an additively manufactured article by supplying a powder material to an irradiation region of an electron beam, laying and leveling the powder material, irradiating the powder material with the electron beam, and melting the powder material. The additive manufacturing device determines whether or not the powder material has scattered during manufacturing of the article. When it is determined that the powder material has scattered, an irradiation region R is heated by a heater before a new powder material is supplied to the irradiation region R. Manufacturing of the article is restarted after the new powder material has been supplied to the heated irradiation region.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: June 11, 2024
    Assignee: IHI Corporation
    Inventors: Masato Yamada, Masashi Mouri, Yuki Kozue
  • Patent number: 12000030
    Abstract: A method of forming a component can include electrochemically depositing a metallic material onto a carrier component to a thickness of greater than 50 microns. The metallic material can include crystal grains and at least 90% of the crystal grains can include nanotwin boundaries. The metallic material can include a Copper-Silver alloy (Cu—Ag) with between about 0.5-2 at %-Ag.
    Type: Grant
    Filed: May 2, 2022
    Date of Patent: June 4, 2024
    Assignee: APPLE INC.
    Inventors: Herng-Jeng Jou, Jacob L. Smith, Weiming Huang
  • Patent number: 11984777
    Abstract: The present invention relates to a method for the thermal treatment of a compressed strand, where the thermal treatment of the compressed strand is carried out in a state installed as intended in a component of an electric motor, to a method for producing an electric motor with at least one component having at least one compressed strand, the compressed strand being thermally treated according to the invention, and to a method for producing a motor vehicle with an electric motor, the electric motor being produced according to the invention.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: May 14, 2024
    Assignee: JHEECO E-DRIVE AG
    Inventor: Martin Stöck
  • Patent number: 11981985
    Abstract: The disclosure discloses a method for manufacturing special purpose vehicle wheels by using 7000 series aluminum alloys, comprising the following steps: step 1, smelting 7000 series aluminum alloys in a smelting furnace; step 2, making the solution obtained in step 1 into an aluminum alloy ingot blank through a spraying and forming process; step 3, extruding the aluminum alloy ingot blank of step 2 to obtain an extrusion bar; step 4, sawing the extrusion bar into blanks and heating them; step 5, rolling the blank into a cake; step 6, putting the cake into a press for forging and forming; step 7, spinning and forming the wheel rim. The wheel manufactured by the method for manufacturing special vehicle wheels with 7000 series aluminum alloys in the present disclosure has high and stable conductivity, qualified impact test and good bending and radial fatigue performance.
    Type: Grant
    Filed: January 14, 2022
    Date of Patent: May 14, 2024
    Assignee: CITIC Dicastal Co., Ltd.
    Inventors: Tieqiang Chen, Zuo Xu, Zhihua Zhu, Qingzhu Zhang, Lixin Huang, Meng Li
  • Patent number: 11981979
    Abstract: A device and method for preparing a low-impurity regenerated brass alloy through step-by-step insertion of an electrode are provided. The device includes a melt heating apparatus, an electrode displacement apparatus, and a pulse current generation apparatus. The automatic electrode lifting apparatus is controlled to adjust an insertion depth of the graphite electrode plate in the metal melt, and the pulse current generation apparatus is controlled to adjust the parameters of pulse current to achieve the impurity reduction on the metal melt. The preparation of a low-impurity regenerated brass alloy involves a short production process, simple operations, low energy consumption, and high impurity removal efficiency, and is suitable for regeneration and large-scale continuous production of non-ferrous metal alloys.
    Type: Grant
    Filed: October 12, 2023
    Date of Patent: May 14, 2024
    Assignee: UNIVERSITY OF SCIENCE AND TECHNOLOGY BEIJING
    Inventors: Xinfang Zhang, Baoyu Zhang, Xiaoshan Huang, Mengcheng Zhou, Changhao Liu, Di Zhang, Longge Yan
  • Patent number: 11978576
    Abstract: A method for preparing a sintered magnet is provided according to one embodiment of the present disclosure. The method includes preparing a mixed powder by coating fluorides on a surface of magnetic powder, adding heavy rare earth hydrides to the mixed powder, and heating the mixed powder, wherein the magnetic powder includes rare earth element-iron-boron-based powder, and the fluorides include at least one of an organic fluoride or an inorganic fluoride.
    Type: Grant
    Filed: October 21, 2019
    Date of Patent: May 7, 2024
    Assignee: LG Chem, Ltd.
    Inventors: In Gyu Kim, Soon Jae Kwon, Ik Jin Choi, Jung Goo Lee, Hyounsoo Uh
  • Patent number: 11966074
    Abstract: The present disclosure provides a metal back plate and a manufacturing process thereof, a backlight module and an electronic device. The metal back plate is used for the backlight module. The metal back plate includes a first area and a second area. The grain size of the metal material in the first area is larger than the grain size of the metal material in the second area. The first area is formed with a first opening.
    Type: Grant
    Filed: May 28, 2021
    Date of Patent: April 23, 2024
    Assignee: BEIJING XIAOMI MOBILE SOFTWARE CO., LTD.
    Inventor: Zheng Wang
  • Patent number: 11961815
    Abstract: A sintered material excellent in thermal stress and bonding strength; a connection structure containing the sintered material; a composition for bonding with which the sintered material can be produced; and a method for producing the sintered material. The sintered material has a base portion, buffer portions, and filling portions. The buffer portions and filling portions are dispersed in the base portion. The base portion is a metal sintered body, each buffer portion is formed from a pore and/or material that is not the same as the sintered body, and each filling portion is formed from particles and/or fibers. The sintered material satisfies A>B. A is the kurtosis of volume distribution of the base portions in a three-dimensional image of the sintered material. B is the kurtosis of volume distribution of the base portions in a three-dimensional image of the sintered material from which the filling portions are removed.
    Type: Grant
    Filed: February 20, 2018
    Date of Patent: April 16, 2024
    Assignee: SEKISUI CHEMICAL CO., LTD.
    Inventors: Hiroyuki Nomoto, Masao Sasadaira
  • Patent number: 11946129
    Abstract: To provide, as a sheet material of a Cu—Ni—Al based copper alloy having a compositional range exhibiting a whitish metallic appearance that is excellent in “strength-bending workability balance” and is excellent in discoloration resistance, a copper alloy sheet material having a composition containing, in terms of % by mass, Ni: more than 12.0% and 30.0% or less, Al: 1.80-6.50%, Mg: 0-0.30%, Cr: 0-0.20%, Co: 0-0.30%, P: 0-0.10%, B: 0-0.05%, Mn: 0-0.20%, Sn: 0-0.40%, Ti: 0-0.50%, Zr: 0-0.20%, Si: 0-0.50%, Fe: 0-0.30%, and Zn: 0-1.00%, with the balance of Cu and unavoidable impurities, and satisfying Ni/Al?15.0, and having a metallic structure having, on an observation plane in parallel to a sheet surface (rolled surface), a number density of fine secondary phase particles having a particle diameter of 20 to 100 nm of 1.0×107 per mm2 or more.
    Type: Grant
    Filed: August 20, 2019
    Date of Patent: April 2, 2024
    Assignee: DOWA METALTECH CO., LTD.
    Inventors: Toshiya Shutoh, Hisashi Suda