Patents Examined by John M. Parker
  • Patent number: 11031481
    Abstract: In a method for manufacturing a semiconductor device, a gate structure is formed over a channel layer and an isolation insulating layer. A first sidewall spacer layer is formed on a side surface of the gate structure. A sacrificial layer is formed so that an upper portion of the gate structure with the first sidewall spacer layer is exposed from the sacrificial layer and a bottom portion of the gate structure with the first sidewall spacer layer is embedded in the first sacrificial layer. A space is formed between the bottom portion of the gate structure and the sacrificial layer by removing at least part of the first sidewall spacer layer. After the first sidewall spacer layer is removed, an air gap is formed between the bottom portion of the gate structure and the sacrificial layer by forming a second sidewall spacer layer over the gate structure.
    Type: Grant
    Filed: August 24, 2020
    Date of Patent: June 8, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chun-Hsiung Lin, Chia-Hao Chang, Chih-Hao Wang, Wai-Yi Lien, Chih-Chao Chou, Pei-Yu Wang
  • Patent number: 11031360
    Abstract: Techniques are provided for an inductor at a second level interface between a first substrate and a second substrate. In an example, the inductor can include a winding and a core disposed inside the winding. The winding can include first conductive traces of a first substrate, second conductive traces of a second non-semiconductor substrate, and a plurality of connectors configured to connect the first substrate with the second substrate. Each connector of the plurality of connectors can be located between a trace of the first conductive traces and a corresponding trace of the second conductive traces.
    Type: Grant
    Filed: August 11, 2020
    Date of Patent: June 8, 2021
    Assignee: Intel Corporation
    Inventors: Cheng Xu, Yikang Deng, Kyu Oh Lee, Ji Yong Park, Srinivas Pietambaram, Ying Wang, Chong Zhang, Rui Zhang, Junnan Zhao
  • Patent number: 11031419
    Abstract: Embodiments of the present disclosure provide an array substrate, a method for manufacturing the same, and a display device. The array substrate includes a base substrate and the array substrate includes a plurality of pixel units. In each of the plurality of pixel units, the array substrate includes a thin film transistor and a storage capacitor disposed above the base substrate, the storage capacitor includes a metal layer, an intermediate layer, and a reflective layer disposed in a stacked manner, the metal layer being adjacent to the base substrate. The array substrate further includes a common electrode layer disposed on a side of the storage capacitor facing away from the base substrate, the reflective layer is electrically connected to the common electrode layer, and the metal layer is electrically connected to an active layer of the thin film transistor.
    Type: Grant
    Filed: April 12, 2019
    Date of Patent: June 8, 2021
    Assignees: ORDOS YUANSHENG OPTOELECTRONICS CO., LTD., BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Jinjin Xue, Dawei Shi, Feng Li, Lei Yao, Wentao Wang, Haifeng Xu, Lu Yang, Lin Hou, Jinfeng Wang, Mei Li, Yezhou Fang
  • Patent number: 11011611
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a semiconductor substrate having a conductive region made of silicon, germanium or a combination thereof. The semiconductor device structure also includes an insulating layer over the semiconductor substrate and a fill metal material layer in the insulating layer. In addition, the semiconductor device structure includes a nitrogen-containing metal silicide or germanide layer between the conductive region and the fill metal material layers.
    Type: Grant
    Filed: June 29, 2020
    Date of Patent: May 18, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD
    Inventors: Min-Hsiu Hung, Yi-Hsiang Chao, Kuan-Yu Yeh, Kan-Ju Lin, Chun-Wen Nieh, Huang-Yi Huang, Chih-Wei Chang, Ching-Hwanq Su
  • Patent number: 11004785
    Abstract: First and second wells are formed in a semiconductor substrate. First and second trenches in the first second wells, respectively, each extend vertically and include a central conductor insulated by a first insulating layer. A second insulating layer is formed on a top surface of the semiconductor substrate. The second insulating layer is selectively thinned over the second trench. A polysilicon layer is deposited on the second insulating layer and then lithographically patterned to form: a first polysilicon portion over the first well that is electrically connected to the central conductor of the first trench to form a first capacitor plate, a second capacitor plate formed by the first well; and a second polysilicon portion over the second well forming a floating gate electrode of a floating gate transistor of a memory cell having an access transistor whose control gate is formed by the central conductor of the second trench.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: May 11, 2021
    Assignees: STMicroelectronics (Rousset) SAS, STMicroelectronics (Crolles 2) SAS
    Inventors: Abderrezak Marzaki, Arnaud Regnier, Stephan Niel
  • Patent number: 10985149
    Abstract: A semiconductor device package includes a transparent substrate, a photo detector and a first conductive layer. The transparent substrate has a first surface and a first cavity underneath the first surface. The photo detector is disposed within the first cavity. The photo detector has a sensing area facing toward a bottom surface of the first cavity of the transparent substrate. The first conductive layer is disposed over the transparent substrate and electrically connected to the photo detector.
    Type: Grant
    Filed: January 15, 2019
    Date of Patent: April 20, 2021
    Assignee: Omnivision Technologies, Inc
    Inventors: Chien Chan Yeh, Ying-Chih Kuo, Wei-Feng Lin
  • Patent number: 10985143
    Abstract: The disclosed technology provides micro-assembled micro-LED displays and lighting elements using arrays of micro-LEDs that are too small (e.g., micro-LEDs with a width or diameter of 10 ?m to 50 ?m), numerous, or fragile to assemble by conventional means. The disclosed technology provides for micro-LED displays and lighting elements assembled using micro-transfer printing technology. The micro-LEDs can be prepared on a native substrate and printed to a display substrate (e.g., plastic, metal, glass, or other materials), thereby obviating the manufacture of the micro-LEDs on the display substrate. In certain embodiments, the display substrate is transparent and/or flexible.
    Type: Grant
    Filed: January 10, 2019
    Date of Patent: April 20, 2021
    Assignee: X Display Company Technology Limited
    Inventors: Christopher Bower, Matthew Meitl, David Gomez, Salvatore Bonafede, David Kneeburg, Alin Fecioru, Carl Prevatte
  • Patent number: 10985054
    Abstract: An interconnect structure and a method of forming an interconnect structure are disclosed. The interconnect structure includes a lower etch stop layer (ESL); an upper low-k (LK) dielectric layer over the lower ESL; a first conductive feature in the upper LK dielectric layer, wherein the first conductive feature has a first metal line and a dummy via contiguous with the first metal line, the dummy via extending through the lower ESL; a first gap along an interface of the first conductive feature and the upper LK dielectric layer; and an upper ESL over the upper LK dielectric layer, the first conductive feature, and the first gap.
    Type: Grant
    Filed: July 13, 2020
    Date of Patent: April 20, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jeng-Shiou Chen, Chih-Yuan Ting, Jyu-Horng Shieh, Minghsing Tsai
  • Patent number: 10978346
    Abstract: An embodiment method includes bonding a first die to a first side of an interposer, the interposer comprising a substrate; after bonding the first die to the first side of the interposer, depositing a first insulating layer on a second side of the interposer opposite the first side; patterning an opening through the substrate and the first insulating layer; and depositing a second insulating layer over the first insulating layer and along sidewalls and a lateral surface of the opening. The second insulating layer comprises silicon. The method further includes removing lateral portions of the second insulating layer to define a sidewall spacer on sidewalls of the opening and forming a through via in the opening, wherein the through via is electrically connected to the first die.
    Type: Grant
    Filed: September 13, 2019
    Date of Patent: April 13, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sung-Hui Huang, Hung-Pin Chang, Sao-Ling Chiu, Shang-Yun Hou, Wan-Yu Lee
  • Patent number: 10978339
    Abstract: A method for fabricating semiconductor device includes the steps of: forming a dielectric layer on a substrate; forming a trench in the dielectric layer; forming a first liner in the trench, wherein the first liner comprises Co—Ru alloy; forming a metal layer on the first liner; and planarizing the metal layer and the first liner to form a metal interconnection.
    Type: Grant
    Filed: June 18, 2018
    Date of Patent: April 13, 2021
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Da-Jun Lin, Bin-Siang Tsai
  • Patent number: 10964548
    Abstract: A method includes forming a semiconductor capping layer over a first fin in a first region of a substrate, forming a dielectric layer over the semiconductor capping layer, and forming an insulation material over the dielectric layer, an upper surface of the insulation material extending further away from the substrate than an upper surface of the first fin. The method further includes recessing the insulation material to expose a top portion of the first fin, and forming a gate structure over the top portion of the first fin.
    Type: Grant
    Filed: September 13, 2019
    Date of Patent: March 30, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yin Wang, Hung-Ju Chou, Jiun-Ming Kuo, Wei-Ken Lin, Chun Te Li
  • Patent number: 10957580
    Abstract: A method includes forming a hard mask over a target layer, performing a treatment on a first portion of the hard mask to form a treated portion, with a second portion of the hard mask left untreated as an untreated portion. The method further includes subjecting both the treated portion and the untreated portion of the hard mask to etching, in which the untreated portion is removed as a result of the etching, and the treated portion remains after the etching. A layer underlying the hard mask is etched, and the treated portion of the hard mask is used as a part of an etching mask in the etching.
    Type: Grant
    Filed: August 3, 2020
    Date of Patent: March 23, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsiang-Wei Liu, Chia-Tien Wu, Wei-Chen Chu
  • Patent number: 10950528
    Abstract: A chip package assembly and a method for manufacturing the same are provided. A die is attached to one of pins located around a chip carrier, so that an electronic component such as a diode is packaged in the chip package assembly and is electrically connected in series with other dies inside the package, thereby improving the degree of integration of the chip package assembly, and reducing a volume of the external circuit.
    Type: Grant
    Filed: January 15, 2019
    Date of Patent: March 16, 2021
    Assignee: SILERGY SEMICONDUCTOR TECHNOLOGY (HANGZHOU) LTD
    Inventor: Shijie Chen
  • Patent number: 10944074
    Abstract: This organic EL display device (100) has multiple pixels, and comprises: an element substrate (1) which has a substrate and multiple organic EL elements supported on the substrate and arranged in each of the multiple pixels; and a thin-film sealing structure (10) covering the multiple pixels. The thin-film sealing structure has a first inorganic barrier layer (12) and an organic barrier layer (14) contacting the upper surface or the lower surface of the first inorganic barrier layer. The element substrate further has a bank layer (33) defining each of the multiple pixels and multiple spacers (31) arranged in the gaps between the pixels, and the multiple spacers (31) are covered by the bank layer (33).
    Type: Grant
    Filed: December 26, 2017
    Date of Patent: March 9, 2021
    Assignee: SAKAI DISPLAY PRODUCTS CORPORATION
    Inventors: Katsuhiko Kishimoto, Yukiya Nishioka
  • Patent number: 10943893
    Abstract: The present disclosure provides a stretchable display device, comprising: a lower substrate made of a stretchable insulating material and having an active area and a non-active area adjacent to the active area; a plurality of individual substrates spaced apart from each other and disposed in the active area of the lower substrate; pixels disposed on the plurality of individual substrates respectively; and a plurality of connecting lines disposed between the plurality of individual substrates on the lower substrate, and electrically connecting corresponding pads disposed within the plurality of individual substrates respectively. The modulus of the plurality of individual substrates is higher than the lower substrate.
    Type: Grant
    Filed: August 6, 2019
    Date of Patent: March 9, 2021
    Assignee: LG DISPLAY CO., LTD.
    Inventors: Hyunju Jung, Eunah Kim
  • Patent number: 10937742
    Abstract: A package includes a plurality of dies, a wall structure, an encapsulant, and a redistribution structure. The wall structure surrounds at least one of the dies. The encapsulant includes a first portion, a second portion, and a third portion. The first portion is encircled by the wall structure. The second portion encircles the wall structure. The third portion connects the first portion and the second portion. The redistribution structure is disposed on the encapsulant and is electrically connected to the dies and the wall structure.
    Type: Grant
    Filed: January 9, 2020
    Date of Patent: March 2, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Po-Hao Tsai
  • Patent number: 10930740
    Abstract: Provided are a multi-direction channel transistor having a gate having an increased effective width and a multi-direction channel, and a semiconductor device including the multi-direction channel transistor, wherein the multi-direction channel transistor includes at least one fin on an active region on a substrate and disposed adjacent to a recess extending in a first direction; a gate line extending in a second direction crossing the first direction and covering at least a portion of the at least one fin and the recess; source/drain regions on the active region at both sides of the gate line; and a channel region in the active region under the gate line between the source/drain regions, wherein the first direction is diagonal to the second direction, and a dielectric film under the gate line has substantially the same thickness on both the at least one fin and the recess.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: February 23, 2021
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hae-in Jung, Moon-young Jeong, Joon Han, Satoru Yamada
  • Patent number: 10921663
    Abstract: An array substrate is provided. The array substrate includes a substrate, a light-shielding layer formed on the substrate, a buffer layer formed on the light-shielding layer, a semiconductor layer formed on the buffer layer, a protection layer formed on the semiconductor layer, an insulating layer formed on the protection layer, and an interlayer dielectric layer formed on the protection layer. The substrate includes a source layer, a drain layer and a gate layer disposed thereon. The source layer and the drain layer are formed on the interlayer dielectric layer. The source layer and the drain layer are separately connected to conductor portions on two ends of the semiconductor layer. The insulating layer is disposed between the gate layer and the semiconductor layer. The interlayer dielectric layer is disposed to cover the gate layer and the protection layer. The insulating layer is disposed to cover the semiconductor layer.
    Type: Grant
    Filed: August 15, 2018
    Date of Patent: February 16, 2021
    Assignees: HKC CORPORATION LIMITED, CHONGQING HKC OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventor: Huailiang He
  • Patent number: 10916658
    Abstract: A semiconductor device includes a channel pattern including a first semiconductor pattern and a second semiconductor pattern, which are sequentially stacked on a substrate, and a gate electrode that extends in a first direction and crosses the channel pattern. The gate electrode includes a first portion interposed between the substrate and the first semiconductor pattern and a second portion interposed between the first and second semiconductor patterns. A maximum width in a second direction of the first portion is greater than a maximum width in the second direction of the second portion, and a maximum length in the second direction of the second semiconductor pattern is less than a maximum length in the second direction of the first semiconductor pattern.
    Type: Grant
    Filed: June 5, 2020
    Date of Patent: February 9, 2021
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Junggil Yang, Seungmin Song, Geumjong Bae, Dong Il Bae
  • Patent number: 10903013
    Abstract: A dielectric powder includes a core-shell structure including a core region formed in an inner portion thereof and a shell region covering the core region. The core region includes barium titanate (BaTiO3) doped with a metal oxide, and the shell region is formed of a ferroelectric material.
    Type: Grant
    Filed: February 5, 2020
    Date of Patent: January 26, 2021
    Assignee: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Chang Hwa Park, Jin Woo Kim, Min Gi Sin, Byung Hyun Park, Chin Mo Kim