Patents Examined by John M. Parker
  • Patent number: 11164813
    Abstract: A transistor semiconductor die includes a drift layer, a first dielectric layer, a first metallization layer, a second dielectric layer, a second metallization layer, a first plurality of electrodes, and a second plurality of electrodes. The first dielectric layer is over the drift layer. The first metallization layer is over the first dielectric layer such that at least a portion of the first metallization layer provides a first contact pad. The second dielectric layer is over the first metallization layer. The second metallization layer is over the second dielectric layer such that at least a portion of the second metallization layer provides a second contact pad and the second metallization layer at least partially overlaps the first metallization layer. The transistor semiconductor die is configured to selectively conduct current between the first contact pad and a third contact pad based on signals provided at the second contact pad.
    Type: Grant
    Filed: April 11, 2019
    Date of Patent: November 2, 2021
    Assignee: Cree, Inc.
    Inventors: Daniel Jenner Lichtenwalner, Edward Robert Van Brunt
  • Patent number: 11158538
    Abstract: An interconnect structure, and a method for forming the same includes forming recess within a dielectric layer and conformally depositing a barrier layer within the recess. A cobalt-infused ruthenium liner is formed above the barrier layer, the cobalt containing ruthenium liner formed by stacking a second liner above a first liner, the first liner positioned above the barrier layer. The first liner includes ruthenium while the second liner includes cobalt. Cobalt atoms migrate from the second liner to the first liner forming the cobalt-infused ruthenium liner. A conductive material is deposited above the cobalt-infused ruthenium liner to fill the recess followed by a capping layer made of cobalt.
    Type: Grant
    Filed: February 4, 2020
    Date of Patent: October 26, 2021
    Assignee: International Business Machines Corporation
    Inventors: Joseph F. Maniscalco, Koichi Motoyama, Oscar van der Straten, Scott A. DeVries, Alexander Reznicek
  • Patent number: 11158764
    Abstract: Epitaxial formation support structures and associated methods of manufacturing epitaxial formation support structures and solid state lighting devices are disclosed herein. In several embodiments, a method of manufacturing an epitaxial formation support substrate can include forming an uncured support substrate that has a first side, a second side opposite the first side, and coefficient of thermal expansion substantially similar to N-type gallium nitride. The method can further include positioning the first side of the uncured support substrate on a first surface of a first reference plate and positioning a second surface of a second reference plate on the second side to form a stack. The first and second surfaces can include uniformly flat portions. The method can also include firing the stack to sinter the uncured support substrate. At least side of the support substrate can form a planar surface that is substantially uniformly flat.
    Type: Grant
    Filed: April 10, 2020
    Date of Patent: October 26, 2021
    Assignee: Micron Technology, Inc.
    Inventor: Calvin Wade Sheen
  • Patent number: 11152488
    Abstract: Semiconductor device and the manufacturing method thereof are disclosed herein. An exemplary semiconductor device comprises a nanostructure disposed over a substrate, wherein the nanostructure includes a plurality of semiconductor layers separated vertically from each other and a dummy pattern layer including dielectric material disposed over and separated vertically from a top semiconductor layer of the plurality of semiconductor layers. The exemplary semiconductor device also comprises a gate structure disposed over a channel region, wherein the gate structure wraps around each of the plurality of semiconductor layers and the dummy pattern layer of the nanostructure.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: October 19, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ta-Chun Lin, Kuo-Hua Pan, Jhon Jhy Liaw
  • Patent number: 11145592
    Abstract: Semiconductor devices and methods of forming the same are provided. A method according to an embodiment includes receiving a substrate including a lower contact feature, depositing a first dielectric layer over a substrate, forming a metal-insulator-metal (MIM) structure over the first dielectric layer, depositing a second dielectric layer over the MIM structure, performing a first etch process to form an opening that extends through the second dielectric layer to expose the MIM structure, performing a second etch process to extend the opening through the MIM structure to expose the first dielectric layer; and performing a third etch process to further extend the opening through the first dielectric layer to expose the lower contact feature. Etchants of the first etch process and the third etch process include fluorine while the etchant of the second etch process is free of fluorine.
    Type: Grant
    Filed: February 11, 2020
    Date of Patent: October 12, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hsiang-Ku Shen, Jian-Ming Huang, Han-Yi Chen, Ecko Lu, Hsiang-Yu Tsai, Chih-Hung Lu, Wen-Tung Chen
  • Patent number: 11145504
    Abstract: A method of forming a film stack with reduced defects is provided and includes positioning a substrate on a substrate support within a processing chamber and sequentially depositing polysilicon layers and silicon oxide layers to produce the film stack on the substrate. The method also includes supplying a current of greater than 5 ampere (A) to a plasma profile modulator while generating a deposition plasma within the processing chamber, exposing the substrate to the deposition plasma while depositing the polysilicon layers and the silicon oxide layers, and maintaining the processing chamber at a pressure of greater than 2 Torr to about 100 Torr while depositing the polysilicon layers and the silicon oxide layers.
    Type: Grant
    Filed: October 9, 2019
    Date of Patent: October 12, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Zhijun Jiang, Ganesh Balasubramanian, Arkajit Roy Barman, Hidehiro Kojiri, Xinhai Han, Deenesh Padhi, Chuan Ying Wang, Yue Chen, Daemian Raj Benjamin Raj, Nikhil Sudhindrarao Jorapur, Vu Ngoc Tran Nguyen, Miguel S. Fung, Jose Angelo Olave, Thian Choi Lim
  • Patent number: 11139399
    Abstract: A method of forming a vertical transistor is provided. The method includes forming a first set of vertical fins in a first row on a first bottom source/drain layer, and a second set of vertical fins in a second row on a second bottom source/drain layer, wherein the vertical fins in the same row are separated by a spacing with a sidewall-to-sidewall distance, SD, and the vertical fins in the same column of adjacent rows are separated by a gap having a gap distance, GD. The method further includes forming a gate metal layer on the first set of vertical fins and the second set of vertical fins, wherein the gate metal layer does not fill in the gap between vertical fins in the same column, and forming a cover layer plug in the remaining gap after forming the gate metal layer.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: October 5, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Juntao Li, Kangguo Cheng, Ruilong Xie, Chanro Park
  • Patent number: 11139245
    Abstract: In one embodiment, an integrated circuit includes a first pattern metal layer, a second pattern metal layer formed over the first pattern metal layer, wherein the second pattern metal layer comprises a second plurality of metal tracks extending in a first direction and less than 9, a third pattern metal layer disposed between the first pattern metal layer and the second pattern metal layer, the third pattern metal layer including, a first metal track segment, a second metal track segment shifted in a second direction from the first metal track segment, and a third metal track segment shifted in the second direction from the second metal track segment, wherein the second plurality of metal tracks, and at least a portion of each of the first metal track segment, the second metal track segment, and the third metal track segment are within a double cell height in the second direction.
    Type: Grant
    Filed: April 1, 2020
    Date of Patent: October 5, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LIMITED
    Inventors: Shih-Wei Peng, Jiann-Tyng Tzeng
  • Patent number: 11127660
    Abstract: Methods are disclosed for forming flat no-leads packages (e.g., QFN packages) with soldering surfaces that are fully coated, e.g., by a tin immersion process, for improved solder connections of the packages to a PCB or other structure. The method includes forming a flat no-leads package structure including a leadframe terminal structure having an exposed top or bottom surface; forming a first coating of a first coating material (e.g., tin) on the exposed top or bottom surface; cutting through a full thickness of the leadframe terminal structure to define an exposed terminal sidewall surface; and forming a second coating of a second coating material (e.g., tin) over the full height of the exposed terminal sidewall surface. The coating (e.g., tin immersion coating) covering the full height of the leadframe terminal sidewall may enhance the flow of solder material, e.g., when soldering to a PCB, to provide an improved solder connection.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: September 21, 2021
    Assignee: Microchip Technology Incorporated
    Inventors: Rangsun Kitnarong, Vichanart Nimibutr, Pattarapon Poolsup, Chanyuth Junjuewong
  • Patent number: 11127694
    Abstract: A physical unclonable functions (PUF) device including a first copper electrode, a second electrode, and a silicon oxide layer positioned directly between the first copper electrode and the second electrode; a method of producing a PUF device; an array comprising a PUF device; and a method of generating a secure key with a plurality of PUF devices.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: September 21, 2021
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Michael Kozicki, Wenhao Chen
  • Patent number: 11121029
    Abstract: The present disclosure provides a semiconductor device and a method for preparing the semiconductor device. The method includes forming a first conductive layer over a substrate, forming a first dielectric structure over the first conductive layer, transforming a sidewall portion of the first conductive layer into a first transformed portion, removing the first transformed portion such that a width of the first dielectric structure is greater than a width of a remaining portion of the first conductive layer, and forming an inter-layer dielectric (ILD) layer covering sidewalls of the first dielectric structure such that a first air spacer is formed between the ILD layer and the remaining portion of the first conductive layer.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: September 14, 2021
    Assignee: NANYA TECHNOLOGY CORPORATION
    Inventor: Jung-Hsing Chien
  • Patent number: 11121144
    Abstract: A method used in forming a memory array comprises forming a stack comprising vertically-alternating first tiers and second tiers. First insulator material is above the stack. The first insulator material comprises at least one of (a) and (b), where (a): silicon, nitrogen, and one or more of carbon, oxygen, boron, and phosphorus, and (b): silicon carbide. Channel-material strings are in and upwardly project from an uppermost material that is directly above the stack. Conducting material is directly against laterally-inner sides of individual of the upwardly-projecting channel-material strings and project upwardly from the individual upwardly-projecting channel-material strings. A ring comprising insulating material is formed individually circumferentially about the upwardly-projecting conducting material. Second insulator material is formed above the first insulator material, the ring, and the upwardly-projecting conducting material.
    Type: Grant
    Filed: November 13, 2019
    Date of Patent: September 14, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Bharat Bhushan, David Daycock, Subramanian Krishnan, Leroy Ekarista Wibowo
  • Patent number: 11101200
    Abstract: Methods are disclosed for forming flat leads packages (e.g., QFP or SOT packages) having leads coated with a solder-enhancing material for improved solder mounting to a PCB or other structure. The method may include forming a flat leads package structure including an array of encapsulated IC structures formed on a common leadframe. An isolation cutting process may be performed to electrically isolate the IC structures from each other and define a plurality of leadframe leads extending from each IC structure. After the isolation cutting process, an immersion coating process is performed to coat exposed surfaces of the leadframe leads, including the full surface area of a distal end of each leadframe lead. The coating (e.g., tin coating) covering the distal ends of the leadframe leads may enhance the flow of solder material, e.g., when soldering to a PCB, to provide an improved solder connection.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: August 24, 2021
    Assignee: Microchip Technology Incorporated
    Inventors: Rangsun Kitnarong, Vichanart Nimibutr, Pattarapon Poolsup, Chanyuth Junjuewong
  • Patent number: 11075353
    Abstract: The present disclosure discloses an organic light-emitting diode display panel and a manufacturing method thereof and a display device, and relates to the field of display technologies. The organic light-emitting diode display panel comprises: a base substrate; a pixel defining layer and a plurality of first electrodes on the base substrate, wherein the pixel defining layer defines, on the base substrate, a plurality of sub-pixel regions arranged in an array, one of the first electrodes is located in each of the sub-pixel regions, and the work function of a middle portion of the first electrode is less than the work function of a peripheral portion; an organic light-emitting layer on each of the first electrodes; and a second electrode electrically connected to the organic light-emitting layer, wherein the first electrode is an anode and the second electrode is a cathode.
    Type: Grant
    Filed: April 3, 2019
    Date of Patent: July 27, 2021
    Assignee: BOE TECHNOLOGY GROUP CO., LTD.
    Inventor: Wenjun Hou
  • Patent number: 11069567
    Abstract: A metal interconnect structure can be fabricated within an integrated circuit (IC). A recess can be created in an IC dielectric layer and a surface modulation liner can be formed by depositing two different metallic elements onto the surfaces of the recess. One metallic element can have a standard electrode potential greater than a standard electrode potential of an interconnect metal, and the other metallic element can have a standard electrode potential less than the standard electrode potential of the interconnect metal. A metal interconnect structure can be formed by filling the remainder of the recess with interconnect metal, which is physically separated from the dielectric layer by the surface modulation liner. The surface topography of the metal interconnect structure can be modulated with a polishing process, by removing a top portion of the interconnect metal and a top portion of the surface modulation liner.
    Type: Grant
    Filed: June 26, 2019
    Date of Patent: July 20, 2021
    Assignee: International Business Machines Corporation
    Inventors: Conal Murray, Chih-Chao Yang
  • Patent number: 11056578
    Abstract: In a method for manufacturing a semiconductor device, an isolation insulating layer is formed over a fin structure. A first portion of the fin structure is exposed from and a second portion of the fin structure is embedded in the isolation insulating layer. A dielectric layer is formed over sidewalls of the first portion of the fin structure. The first portion of the fin structure and a part of the second portion of the fin structure in a source/drain region are removed, thereby forming a trench. A source/drain epitaxial structure is formed in the trench using one of a first process or a second process. The first process comprises an enhanced epitaxial growth process having an enhanced growth rate for a preferred crystallographic facet, and the second process comprises using a modified etch process to reduce a width of the source/drain epitaxial structure.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: July 6, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yi-Jing Lee, Ming-Hua Yu
  • Patent number: 11056485
    Abstract: A semiconductor device having a three-dimensional structure is disclosed herein. The semiconductor device includes a substrate. a first electrode line that extends in a first direction perpendicular to the substrate, a device pattern that extends from the first electrode line in a second direction parallel to the substrate, and a second electrode line connected to the device pattern. The device pattern may comprise at least one semiconductor layer pattern, where the at least one semiconductor layer pattern comprises an n-type dopant or a p-type dopant.
    Type: Grant
    Filed: October 7, 2019
    Date of Patent: July 6, 2021
    Assignee: SK HYNIX INC.
    Inventors: Hae Ri Kim, Tae Jun You, Ju Ry Song
  • Patent number: 11049829
    Abstract: An integrated circuit die includes a metal layer, a first passivation layer disposed above the metal layer, an aluminum containing redistribution layer disposed above the first passivation layer, an under bump metallization layer, and a redistribution layer plug. The redistribution layer plug is coupled to the metal layer and disposed in a via in the first passivation layer. The under bump metallization layer is coupled to the aluminum containing redistribution layer above the first passivation layer at a distance from the redistribution layer plug.
    Type: Grant
    Filed: December 2, 2019
    Date of Patent: June 29, 2021
    Assignee: Avago Technologies International Sales Pte. Limited
    Inventors: Sam Ziqun Zhao, Liming Tsau, Edward Law, Andy Brotman
  • Patent number: 11038060
    Abstract: The present disclosure provides a semiconductor device and a preparation method thereof. The semiconductor device includes a semiconductor substrate, a semiconductor fin and a filled trench. The semiconductor fin extends upwards from the semiconductor substrate. The filled trench is formed in the semiconductor fin and includes a first sigma portion, a second sigma portion and a middle portion. The first sigma portion is partially filled by a semiconductor buffer region, and an unfilled part of the first sigma portion is filled by a doped semiconductor region grown on the semiconductor buffer region. The second sigma portion is filled by the semiconductor buffer region. The middle portion connects the first sigma portion to the second sigma portion, and the middle portion is filled by the semiconductor buffer region.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: June 15, 2021
    Assignee: NANYA TECHNOLOGY CORPORATION
    Inventor: Teng-Yen Huang
  • Patent number: 11031481
    Abstract: In a method for manufacturing a semiconductor device, a gate structure is formed over a channel layer and an isolation insulating layer. A first sidewall spacer layer is formed on a side surface of the gate structure. A sacrificial layer is formed so that an upper portion of the gate structure with the first sidewall spacer layer is exposed from the sacrificial layer and a bottom portion of the gate structure with the first sidewall spacer layer is embedded in the first sacrificial layer. A space is formed between the bottom portion of the gate structure and the sacrificial layer by removing at least part of the first sidewall spacer layer. After the first sidewall spacer layer is removed, an air gap is formed between the bottom portion of the gate structure and the sacrificial layer by forming a second sidewall spacer layer over the gate structure.
    Type: Grant
    Filed: August 24, 2020
    Date of Patent: June 8, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chun-Hsiung Lin, Chia-Hao Chang, Chih-Hao Wang, Wai-Yi Lien, Chih-Chao Chou, Pei-Yu Wang