Patents Examined by Juan C Valencia
  • Patent number: 10780430
    Abstract: Methods are provided for forming noble metal catalysts comprising both platinum and a second Group VIII metal, such as palladium, with improved aromatic saturation activity. Instead of impregnating a catalyst with both platinum and another Group VIII metal at the same time, a sequential impregnation can be used, with the Group VIII metal being impregnated prior to platinum. It has been discovered that by forming a Group VIII metal-impregnated catalyst first, and then impregnating with platinum, the distribution of platinum throughout the catalyst can be improved. The improved distribution of platinum can result in a catalyst with enhanced aromatic saturation activity relative to a catalyst with a similar composition formed by simultaneous impregnation.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: September 22, 2020
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Matthew S. Ide, Stephen J. McCarthy, Gary P. Schleicher
  • Patent number: 10760015
    Abstract: An installation for the hydrotreatment and hydroconversion of hydrocarbon-containing feedstocks, with a common fractionation section, for the production of at least one of the following products: naphtha (light and/or heavy), diesel, kerosene, distillate and residue: comprising at least: at least one hydroconversion reactor, a hot high-pressure separator drum B-1, a cold high-pressure separator drum B-2, at least one hydrotreatment reactor, a cold high-pressure separator drum B-20, a common fractionation section separating a top fraction, an intermediate fraction and a heavy fraction, An integrated hydroconversion and hydrotreatment process implementing said installation.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: September 1, 2020
    Assignee: AXENS
    Inventors: Nicolas Pupat, Odile Lajeunesse, Jerome Bonnardot, Christelle Pourcelly, Benoit Despres
  • Patent number: 10752842
    Abstract: The present disclosure refers to a process and a process plant for extraction of metals from a hydrocarbon mixture obtained from a gasification or pyrolysis process, comprising the steps of combining said hydrocarbon mixture with an aqueous acid forming a mixture, mixing said mixture, separating said mixture in a contaminated aqueous phase and a purified hydrocarbon phase, with the associated benefit of said aqueous acid being able to release metals bound in such gasification and pyrolysis processes.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: August 25, 2020
    Assignee: HALDOR TOPSØE A/S
    Inventors: Rasmus Gottschalck Egeberg, Angelica Hidalgo Vivas, Søren Selde Enevoldsen
  • Patent number: 10752848
    Abstract: A process for hydrocracking hydrocarbon-containing VD feedstocks allowing the improved production of middle distillates: a) hydrocracking of feedstocks in hydrogen and at least one hydrocracking catalyst, b) gas/liquid separation of effluent originating from a) producing a liquid effluent and a gaseous effluent with hydrogen, c) comprising the gaseous effluent before recycling into hydrocracking a), d) fractionation of liquid effluent into at least one effluent of converted hydrocarbon-containing products having boiling points less than 340° C. and an unconverted liquid fraction having a boiling point greater than 340° C., e) hydrocracking unconverted liquid fraction from d), in hydrogen and a hydrocracking catalyst, f) hydrotreating effluent from e) in a mixture with a hydrocarbon-containing gas-oil liquid feedstock having at least 95% by weight of compounds boiling at a boiling point between 150 and 400° C., hydrotreating f) operating in hydrogen and with at least one hydrotreating catalyst.
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: August 25, 2020
    Assignee: IFP Energies nouvelles
    Inventors: Jan Verstraete, Elodie Tellier, Thomas Plennevaux, Emmanuelle Guillon, Anne Claire Pierron
  • Patent number: 10753646
    Abstract: An apparatus for heating a process fluid is presented. The apparatus is for improving the foot-print of a fired heater and to reduce the fired heater volume. The apparatus includes a W-shaped process coil to provide for a smaller single-cell fired heater, and a fired heater with a lower profile, providing flexibility in positioning relative to downstream reactors.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: August 25, 2020
    Assignee: UOP LLC
    Inventors: Rajeswar Gattupalli, Quan Yuan, Clayton C. Sadler, Michael J. Vetter, Bryan J. Egolf
  • Patent number: 10752847
    Abstract: An integrated hydrothermal process for upgrading heavy oil includes the steps of mixing a heated water stream and a heated feed in a mixer to produce a mixed fluid, introducing the mixed stream to a reactor unit to produce a reactor effluent that includes light fractions, heavy fractions, and water, cooling the reactor effluent in a cooling device to produce a cooled fluid, depressurizing the cooled fluid in a depressurizing device to produce a depressurized fluid, introducing the depressurized fluid to a flash drum configured to separate the depressurized fluid into a light fraction stream and a heavy fraction stream. The light fraction stream includes the light fractions and water and the heavy fraction stream includes the heavy fractions and water. The process further includes the step of introducing the heavy fraction stream to an aqueous reforming unit that includes a catalyst to produce an aqueous reforming outlet.
    Type: Grant
    Filed: March 7, 2018
    Date of Patent: August 25, 2020
    Assignee: SAUDI ARABIAN OIL COMPANY
    Inventors: Ki-Hyouk Choi, Mazin M. Fathi, Bader M. Alotaibi, Ali S. Al-Nasir
  • Patent number: 10745628
    Abstract: A hydrogenation catalyst with a small amount of supported metal that is excellent in stability and inhibition of side reactions is provided. The catalyst hydrogenates an aromatic hydrocarbon compound into an alicyclic hydrocarbon compound, and a Group X metal represented by nickel is supported in a composite support including at least alumina and titania. The composite support preferably includes at least an alumina substrate coated with titania. It is also preferable that the Group X metal is prereduced by hydrogen. In the case that the Group X metal is nickel, the nickel content is preferably 5-35 wt % as nickel oxide in the catalyst. The substrate includes, for example, a porous structure formed by a plurality of needle-shaped or column-shaped intertwined three-dimensionally.
    Type: Grant
    Filed: September 9, 2017
    Date of Patent: August 18, 2020
    Assignee: CHIYODA CORPORATION
    Inventors: Kenichi Imagawa, Haruto Kobayashi, Akihiro Muto, Shinichi Inoue
  • Patent number: 10745630
    Abstract: A method of reducing catalyst agglomeration in a slurry hydrocracking zone containing at least two reactors is described. A hydrocarbon feed and a slurry hydrocracking catalyst are contacted in a first reactor to form a first effluent containing slurry hydrocracking reaction products, unreacted hydrocarbon feed, and the slurry hydrocracking catalyst, wherein the slurry hydrocracking catalyst agglomerates. The first effluent and an unsupported hydrogenation catalyst are contacted in a second reactor to form a second effluent containing the slurry hydrocracking reaction products, unreacted hydrocarbon feed, the slurry hydrocracking catalyst, and asphaltene reaction products.
    Type: Grant
    Filed: June 4, 2018
    Date of Patent: August 18, 2020
    Assignee: UOP LLC
    Inventors: Grant H. Yokomizo, Daniel J. Pintar, Gavin P. Towler
  • Patent number: 10731088
    Abstract: A catalytic composition and process for using same. The catalyst may be utilized for an oxidation reaction, for example, for the conversion of mercaptans to disulfides. The catalyst includes a metal component, for example, cobalt phthalocyanine structure. The organic component may comprise any number of different oxidation promoters that are capable of promoting the reduction of oxygen, preferably in a caustic, environment. The organic component may comprise an unsaturated six member ring having at least five carbon atoms, and wherein the sixth member of the six member ring is either C or N, and in which at least two substituent groups are present on the six membered ring.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: August 4, 2020
    Assignee: UOP LLC
    Inventors: Yili Shi, Neil Thomas
  • Patent number: 10731086
    Abstract: The present disclosure is directed to an apparatus and a compact riser separation system for separating a gaseous mixture from a stream of particles entering from a central riser reactor used for cracking a hydrocarbon feed with the stream of particles. The apparatus provides improved gas solid separation efficiency and maximize containment of the hydrocarbon and minimize residence time in the separation system and thereby minimizing undesired post riser cracking reactions.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: August 4, 2020
    Assignee: Technip Process Technology, Inc.
    Inventors: Paul Marchant, Raj Kanwar Singh
  • Patent number: 10723961
    Abstract: A system for producing American Petroleum Institute Standards Group III Base Stock from vacuum gas oil, by injecting hydrogen, heating, partially saturating the vacuum gas oil through a plurality of hydrogen reactors connected in series with a liquid hourly space velocity (LHSV)?1 of from 0.5 to 2.5, forming a saturated heated base oil, and coproduct. The system fractionates the saturated heated base oil to while simultaneously refluxing a cooled fuel oil fraction forming an American Petroleum Institute Standards Group III Base Stock with less than 0.03% sulfur, with greater than 90% saturates and a viscosity index greater than 120 as defined by ASTM D-2270, a viscosity from 2 to 10 centistokes as defined by ASTM D-445 a boiling range from 600 degrees F. to 1050 degrees F., and a cold crank viscosity (CCS) between 1200 and 5000 centipoise at ?25 degrees C. and as defined by ASTM D-5293.
    Type: Grant
    Filed: August 14, 2019
    Date of Patent: July 28, 2020
    Assignee: VERTEX ENERGY
    Inventors: Benjamin Cowart, David Peel, Frank Lappin, James Craig Smith
  • Patent number: 10717941
    Abstract: Process scheme configurations are disclosed that enable conversion of crude oil feeds with several processing units in an integrated manner into petrochemicals. The designs utilize minimum capital expenditures to prepare suitable feedstocks for the steam cracker complex. The integrated process for converting crude oil to petrochemical products including olefins and aromatics, and fuel products, includes mixed feed steam cracking and fluid catalytic cracking. Feeds to the mixed feed steam cracker include light products and naphtha from hydroprocessing zones within the battery limits, recycle streams from the C3 and C4 olefins recovery steps, and raffinate from a pyrolysis gasoline and FCC naphtha aromatics extraction zone within the battery limits.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: July 21, 2020
    Assignee: Saudi Arabian Oil Company
    Inventors: Mohammed Saeed Al-Ghamdi, Bader BaHammam, Naif Al Osaimi, Sami Barnawi
  • Patent number: 10711200
    Abstract: A water-based extraction process for extracting bitumen from mined oil is provided comprising providing a water-based mixture containing bitumen; and introducing nanobubbles to the mixture to attach to bitumen and, thereby, extract the bitumen from the water-based mixture, wherein a nanobubble has a diameter of less than 5,000 nm.
    Type: Grant
    Filed: January 22, 2018
    Date of Patent: July 14, 2020
    Assignee: SYNCRUDE CANADA LTD. in trust for the owners of the Syncrude Project as such owners exist now and in the future
    Inventor: Jun Long
  • Patent number: 10711199
    Abstract: A processing apparatus includes a microwave processing chamber. In addition, the processing apparatus includes a rigid, rotatable feed wheel rotatable about an axis of rotation such that a part of the feed wheel is located within the processing chamber. Further, the processing apparatus includes a feed device configured to deposit materials to be processed onto the feed wheel. Still further, the processing apparatus includes an output into which processed materials from the feed wheel can be deposited.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: July 14, 2020
    Assignee: NOV DOWNHOLE EURASIA LIMITED
    Inventors: George Burnett, Mike Bradley, John Robinson
  • Patent number: 10696905
    Abstract: The present invention relates to a pressure-controlled oil refining device for refining oil from liquid-state oil waste. The purpose of the present invention is to provide a pressure-controlled oil refining device wherein: liquid-state oil waste is introduced and then heated such that, as the pressure rises, the vaporized fluid (oil+impurities) is transferred in the upward direction; a pressure valve is opened/closed such that the oil and impurities can be separated from the fluid and then discharged; the oil is condensed by a cooler such that the same can be liquefied again and stored; and the oil can be refined from the oil waste and reused.
    Type: Grant
    Filed: November 3, 2016
    Date of Patent: June 30, 2020
    Inventor: Yongil Park
  • Patent number: 10696906
    Abstract: A coke catching apparatus for use in hydrocarbon cracking to assist in the removal of coke and the prevention of coke build up in high coking hydrocarbon processing units. The apparatus includes a grid device for preventing large pieces of coke from entering the outlet of the process refining equipment while lowing small pieces of coke to pass through and be disposed of. The coke catching apparatus can be easily disassembled to be removed from the refining process equipment and cleaned.
    Type: Grant
    Filed: September 7, 2018
    Date of Patent: June 30, 2020
    Assignee: Marathon Petroleum Company LP
    Inventors: Gregory A. Cantley, Ross Vail, Kathleen Yaden, Ray Brooks
  • Patent number: 10689588
    Abstract: A process for obtaining a wax fraction from a feed wax, the process comprising: (a) providing a molten feed wax in a container; (b) solidifying the feed wax by cooling; (c) increasing the temperature of the feed wax to a temperature at which a first fraction of the feed wax melts, said first fraction having a congealing point which is lower than the congealing point of the feed wax; (d) recovering the first fraction of the feed wax; (e) increasing the temperature of the remaining feed wax to a temperature at which a further fraction of the feed wax melts; and (f) recovering the further fraction of the feed wax. The feed wax comprises at least 75 wt.-% of linear alkanes and each recovered fraction comprises at least 19 wt.-% of the feed wax.
    Type: Grant
    Filed: June 23, 2016
    Date of Patent: June 23, 2020
    Assignee: Sasol Wax GmbH
    Inventors: Gernot Meyer, Ingo Behrmann
  • Patent number: 10689587
    Abstract: According to an embodiment of the present disclosure, petrochemicals may be produced from crude oil by a process which includes passing the crude oil and hydrogen into a hydroprocessing reactor, separating the hydrotreated oil into a lesser boiling point fraction and a greater boiling point fraction, passing the lesser boiling point fraction to a pyrolysis section of a steam cracker to produce a pyrolysis effluent comprising olefins, aromatics, or both, passing the greater boiling point fraction to a gasifier, where the gasifier produces hydrogen, and passing at least a portion of the hydrogen produced by the gasifier to the hydroprocessing reactor.
    Type: Grant
    Filed: April 3, 2018
    Date of Patent: June 23, 2020
    Assignee: Saudi Arabian Oil Company
    Inventors: Essam Al-Sayed, Omer Refa Koseoglu, Lianhui Ding, Abdennour Bourane, Alberto Lozano Ballesteros, Furqan Al Jumah
  • Patent number: 10683459
    Abstract: Provided are a liquid-phase hydroisomerization system and a process therefor and use thereof. The system comprises a gas-liquid mixer (3), a hydroisomerization reactor (4) and a fractionating column (6). An oil product and hydrogen are mixed as a liquid hydrogen-oil mixture, and are introduced into the hydroisomerization reactor for a hydroisomerization reaction, and after being fractionated, a target product is led out. A supplemental hydrogen-dissolving inner member is provided at least between a group of two adjacent catalyst bed layers in order to supplement hydrogen to the reactants. The process cancels a circulating hydrogen compressor, has a simple process flow, and can be applied to the production of a lubricant base oil by the hydroisomerization of a lubricant raw material or the production of a low freezing point diesel by the hydroisomerization of and the reduction in the freezing point of a diesel raw material.
    Type: Grant
    Filed: June 8, 2016
    Date of Patent: June 16, 2020
    Assignee: PetroChina Company Limited
    Inventors: Shoutao Ma, Xiaoqiao Huang, Famin Sun, Qingfeng Ma, Fangming Xie, Yongsheng Duan, Xianjun Wu, Fengxuan Li, Dongmei Ge, Endong Xia, Ruifeng Li, Ronglei Ji, Liying Liu, Lihong Qin, Xiangbin Meng, Chunming Dong, Xuefeng Lu, Rui Wang, Tiegang Xu, Shurong Ni
  • Patent number: 10655072
    Abstract: The invention relates weldments useful as heat transfer tubes in pyrolysis furnaces. The invention relates to tubes that are useful in pyrolysis furnaces. The weldments include a tubular member and at least one mixing element. The tubular member comprises an aluminum-containing alloy. The mixing element comprises an aluminum-containing alloy. The mixing element's aluminum-containing alloy can be the same as or different from the tubular member's aluminum-containing alloy. Other aspects of the invention relate to pyrolysis furnaces which include such weldments, and the use of such pyrolysis furnaces for hydrocarbon conversion processes such as steam cracking.
    Type: Grant
    Filed: June 3, 2019
    Date of Patent: May 19, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: David B. Spicer, Changmin Chun