Patents Examined by Katherine Fernandez
  • Patent number: 8968202
    Abstract: There are provided an ultrasound imaging system and a method of forming a plurality of scan lines and frames by using receiving signals provided by transducers in a probe. Main scan lines, which are selected among the scan lines and supplement scan lines determined with the others, are assigned to each scan line data forming unit in the ultrasound imaging system. A partial data of the main scan line and a first supplement data of the supplement scan line are formed with receive data obtained from receive signals from at least one transducer. A second supplement data provided from other scan line data forming units is applied to the partial data of the main scan line to form a scan line data of the main scan line.
    Type: Grant
    Filed: April 11, 2008
    Date of Patent: March 3, 2015
    Assignee: Medison Co., Ltd.
    Inventor: Moo Ho Bae
  • Patent number: 8958866
    Abstract: A system and method for accurately producing MR images of selected vascular compartments includes employing a control scan and a tag scan, each including velocity selective modules that suppress signal from blood flowing faster than a given cutoff velocity, to acquire control and tag sets of NMR data that may be subtracted to produce a compartment-specific MR image that is substantially free of information from stationary tissues and blood outside the selective vascular compartments. Accordingly, physiological parameters, such as oxygen saturation (SaO2), oxygen extraction fraction (OEF), and cerebral metabolic rate of oxygen (CMRO2), can be generated from the compartment-specific images. Further still, kinetic curves of oxygen exchange can be created, thus providing detailed insight into oxygen exchange dynamics.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: February 17, 2015
    Assignee: The General Hospital Corporation
    Inventors: Divya S. Bolar, Elfar Adalsteinsson, Bruce R. Rosen, A. Gregory Sorensen
  • Patent number: 8948848
    Abstract: Embolic protection devices and methods for capturing embolic debris. An embolic protection device includes a pigtail catheter having a lumen for housing a guidewire. The distal portion of the catheter has one or more apertures in fluid communication with the lumen and one or more radiopaque markers on the distal-most section. The device includes a self-expanding filter coupled to a side of the catheter and a movable outer sheath surrounding the catheter. The outer sheath holds the filter in a collapsed configuration when surrounding the filter. The outer sheath is proximally retracted to deploy the filter. A method of capturing embolic debris includes inserting a guidewire into a body lumen, tracking the device over the guidewire, retracting the guidewire, positioning the device using the radiopaque marker, retracting the outer sheath and deploying the filter, performing a procedure, and advancing the outer sheath to recapture the filter.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: February 3, 2015
    Assignee: Innovative Cardiovascular Solutions, LLC
    Inventor: William M Merhi
  • Patent number: 8939910
    Abstract: A hydrogel marker is placed under stress during its curing stage, in one embodiment, by application of an externally applied force. The stress may also be induced during or after the dehydration process. The direction of the externally applied force increases the length, width, depth, or radial extent of the marker. The elastic limit of the marker is exceeded when the external force is applied so that the marker substantially retains its stressed size and shape when the externally applied force is removed. When the stretched or otherwise deformed dehydrated marker is hydrated, it substantially returns to the configuration it had prior to its dehydration and prior to the application of the externally applied force.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: January 27, 2015
    Assignee: Devicor Medical Products, Inc.
    Inventor: John S. Fisher
  • Patent number: 8942783
    Abstract: Inventive embodiments include a system for preventing Sudden Infant Death Syndrome (SIDS) in an infant, by the application of Stochastic Resonance neurological stimuli. The system includes a crib mattress and copper noise grids, wherein the copper noise grids are embedded in the crib mattress. The system also includes a mechanism for generating time controlled white noise and time controlled cyclic signals, combined with a multitude of varying frequencies and harmonics, wherein the mechanism is adjustable for measured local (near crib) white noise power density levels, the mechanism further adjustable for diurnal and seasonal white noise power density level changes. The system also includes circuitry effective for producing positive and negative adjustable DC voltage levels.
    Type: Grant
    Filed: June 5, 2012
    Date of Patent: January 27, 2015
    Assignee: Element 1 Systems LLC
    Inventor: Adan R. Cervantes
  • Patent number: 8934961
    Abstract: A surgical procedure is provided. The procedure acquires a plurality of points on or near a bone abnormality and registers them with a surgical navigation system. The navigation system uses the acquired points to make an implant having a surface adapted to contact the bone, and particularly an implant having a portion whose shape substantially matches that of the bone abnormality.
    Type: Grant
    Filed: May 19, 2008
    Date of Patent: January 13, 2015
    Assignee: Biomet Manufacturing, LLC
    Inventors: Ryan Cameron Lakin, Kevin Stone, Christina Lakin
  • Patent number: 8926517
    Abstract: A curved or bendable micro-electro-mechanical transducer (such as the cMUT) is disclosed. The transducer has a plurality of transducer elements built on a substrate. The substrate has a slot below every two neighboring device elements. Each slot is at least at least partially filled with a flexible material to allow bending of the substrate. A bending actuator may be included to facilitate the bending of the substrate. An exemplary bending actuator uses a nonuniformly shrinkable material to bend the substrate. A curved or bendable cMUT of the present invention can be configured to be an intravascular ultrasound (IVUS) device.
    Type: Grant
    Filed: June 19, 2006
    Date of Patent: January 6, 2015
    Assignee: Kolo Technologies, Inc.
    Inventor: Yongli Huang
  • Patent number: 8929971
    Abstract: A method and system for managing at least one animal is disclosed. The method can include imaging, such as ultrasound imaging, a lung of a live animal, such as a ruminant or bovine. The imaging can be performed to determine a degree of respiratory damage from past respiratory illness. After imaging, information regarding respiratory damage can be used to select at least one aspect of the treatment, care or disposition of the animal. For example, the information can be used to select the amount or type of feed provided to the animal at a feedlot. The information also can be used to select how long the animal should be housed at the feedlot prior to slaughter. If an animal is diagnosed with a respiratory illness, information about its degree of respiratory damage from past respiratory illness also can be used to select the appropriate medical treatment or lack of treatment.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: January 6, 2015
    Assignee: MWI Veterinary Supply Co.
    Inventors: John T. Haynes, William C. Pratt
  • Patent number: 8926516
    Abstract: An ultrasound imaging apparatus comprises an ultrasonic probe configured to transmit and receive an ultrasonic wave and a controller configured to control the ultrasonic probe such that an ultrasonic wave for imaging a contrast agent injected into an object and an ultrasonic wave for imaging a tissue movement of the object are transmitted in time division. A method of ultrasound imaging comprises transmitting a first ultrasonic wave and a second ultrasonic wave which hardly destroys bubbles of a contrast agent, obtaining blood flow information based on a signal generated from the first ultrasonic wave, and obtaining tissue movement information based on a signal generated from the second ultrasonic wave.
    Type: Grant
    Filed: April 20, 2005
    Date of Patent: January 6, 2015
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Medical Systems Corporation
    Inventor: Hiroyuki Tsujino
  • Patent number: 8926513
    Abstract: The analysis image generating unit generates section images from volume analysis data that is collected by sending an ultrasound wave down to a region under the ribs. The right/left identifying unit identifies the right or left breast from cyclic motion components in the section images. The extending direction detecting unit analyzes plane-A images or plane-B images generated from the same volume analysis data, or a plane-C thickness-added MIP image, and detects the rib extending direction. The extending direction detecting unit also determines the position of the ultrasound probe based on the relative displacement of the extending direction. The body mark generating unit generates a body mark from the analysis results obtained by the right/left identifying unit and the extending direction detecting unit. The image synthesizing unit integrates the display image generated by the display image generating unit and the body mark, and displays it on the monitor.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: January 6, 2015
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Medical Systems Corporation
    Inventors: Cong Yao, Naohisa Kamiyama, Yoko Okamura
  • Patent number: 8923952
    Abstract: A system and method for performing quantitative lesion analysis in molecular breast imaging (MBI) using the opposing images of a slightly compressed breast that are obtained from the dual-head gamma camera. The method uses the shape of the pixel intensity profiles through each tumor to determine tumor diameter. Also, the method uses a thickness of the compressed breast and the attenuation of gamma rays in soft tissue to determine the depth of the tumor from the collimator face of the detector head. Further still, the method uses the measured tumor diameter and measurements of counts in the tumor and background breast region to determine relative radiotracer uptake or tumor-to-background ratio (T/B ratio).
    Type: Grant
    Filed: December 10, 2007
    Date of Patent: December 30, 2014
    Assignee: Mayo Foundation for Medical Education and Research
    Inventors: Michael K. O'Connor, Carrie B. Hruska
  • Patent number: 8905936
    Abstract: A catheter includes a catheter main body provided with a window portion through which an inspection wave passes, a drive shaft provided with a detection unit detecting the inspection wave and concurrently installed advanceably and retractably in an axial direction inside the catheter main body, and a bias member biasing a force onto the drive shaft for moving the drive shaft forward toward the distal side thereof.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: December 9, 2014
    Assignee: Terumo Kabushiki Kaisha
    Inventor: Shigenobu Iwahashi
  • Patent number: 8886282
    Abstract: A system and method for measuring a magnetocardiogram (MCG) in order to measure a weak magnetic field generated from the heart of a small animal such as a laboratory rat are provided. The system includes a case, a SQUID sensor located and fixed inside the case to detect magnetism, a platform arranged near the SQUID sensor inside the case, the small animal being placed on the platform, a linear station to which the platform is fixed to move a location of the platform, and a control unit configured to control operations of the SQUID sensor and the linear station and measure the MCG of the small animal using intensities of the magnetism detected by the SQUID sensor.
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: November 11, 2014
    Assignee: Korea Research Institute of Standards and Science
    Inventors: In Seon Kim, Yong Ho Lee, Ki Woong Kim
  • Patent number: 8868153
    Abstract: A method includes obtaining a plurality of magnetic resonance (MR) coil images of a subject of interest, each MR coil image being generated from one of an array of MR receiving coils; combining the plurality of coil images to generate an image estimate of the subject of interest; performing a multichannel blind deconvolution (MBD) process including: deriving coil sensitivity information for every one of the array of MR receiving coils based on the image estimate or a filtered image estimate derived from the image estimate; updating the image estimate or the filtered image estimate using the derived coil sensitivity information to generate an updated image estimate; and applying a homomorphic filter to the image estimate to derive the filtered image estimate, or to the updated image estimate to derive a filtered updated image estimate, or a combination thereof.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: October 21, 2014
    Assignee: General Electric Company
    Inventors: Dominic Michael Graziani, Christopher Judson Hardy, Ek Tsoon Tan, Stephen Joseph Garnier
  • Patent number: 8834371
    Abstract: In ultrasound diagnosis of, for example, the breasts, a microstructure extraction image in which a microstructure is actively extracted is generated by performing MIP processing together with CFAR processing of removing speckle patterns from a B mode image (tissue image). The generated microstructure extraction image is displayed in the dual display form or the triplex display form, together with, for example, a B mode image before CFAR processing or a B mode image after CFAR processing.
    Type: Grant
    Filed: March 30, 2006
    Date of Patent: September 16, 2014
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Medical Systems Corporation
    Inventor: Naohisa Kamiyama
  • Patent number: 8838206
    Abstract: A Veress needle assembly comprises an outer steel tube with a sharpened tip at the distal end surrounding an inner rod having a blunt distal end. The proximal end of the inner rod is spring biased towards a position in which its distal end extends beyond the distal end of the outer stainless steel tube so that while piercing the wall of a body cavity the inner rod is forced upwardly against the spring bias to allow the sharpened end of the outer tube to extend into a cutting position. An indicator light supported on the proximal end of the assembly is controlled by a switch which is in a first position when the outer tube is passing through the wall of the body cavity and a second position when the outer tube enters the body cavity behind the wall, allowing the rod to move beyond the distal end of the outer tube, thereby changing the illumination of the light source so that the operator is signaled that the Veress needle has passed into the body cavity.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: September 16, 2014
    Inventor: Reza S. Mohajer
  • Patent number: 8758251
    Abstract: An ultrasound endoscope having an ultrasound transducer mounted on a rigid tip end section at the distal end of an elongated endoscopic insert section, on the front side of a inclined casing wall section in which illumination windows and an optical image pickup assembly are fitted. For protrusion of a medical instrument into a body cavity, an instrument outlet of a biopsy channel is opened in a casing of the rigid tip end section in an obliquely upward direction from behind the ultrasound transducer. As far as a proximal end of the rigid tip end section, the biopsy channel is constituted by a flexible tube which is extended in the axial direction of the insert section and joined by way of a curved connecting pipe with a terminal passage which is formed internally of a casing of the rigid tip end section and inclined relative to the longitudinal axis of the latter.
    Type: Grant
    Filed: February 12, 2007
    Date of Patent: June 24, 2014
    Assignee: FUJIFILM Corporation
    Inventor: Shinichi Kohno
  • Patent number: 8715190
    Abstract: According to one embodiment, an ultrasound diagnosis apparatus includes a change amount calculating unit, an estimating unit and a control unit. The change amount calculating unit is configured to calculate amount of change of a pattern of each of a plurality of local regions among a plurality of ultrasound images generated along time series based on a reflected wave of an ultrasound wave transmitted by an ultrasound probe. The estimating unit is configured to estimate a position of a rotation axis of a scanning cross-section in each ultrasound image based on the amount of change of the pattern of each of the plurality of local regions calculated by the change amount calculating unit. The control unit is configured to superimpose the rotation axis estimated by the estimating unit on each ultrasound image and displays the same on a monitor.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: May 6, 2014
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Medical Systems Corporation
    Inventor: Naohisa Kamiyama
  • Patent number: 8657748
    Abstract: A blood vessel function inspecting apparatus including a first blood state index value calculating portion that obtains estimated hematocrit values at a plurality of points predetermined within a blood vessel, on the basis of values of a blood viscosity and values of a shear rate at said plurality of points, which are respectively extracted from a viscosity distribution and a shear rate distribution, and according to reference relationships between a hematocrit value and the blood viscosity, which reference relationships respectively correspond predetermined different values of the shear rate; and a second blood state index value calculating portion that calculates, as said blood state index value, a value relating to an amount of difference of the estimated hematocrit values at said plurality of points with respect to each other, which amount is minimized by transforming said reference relationships at the same ratio for all of the values of the shear rate.
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: February 25, 2014
    Assignees: National Institute of Advanced Industrial Science and Technology, Unex Corporation
    Inventors: Naotaka Nitta, Hiroshi Masuda
  • Patent number: 8630695
    Abstract: The invention is aimed at improving valve pinpointing and reading devices by proposing to activate a magnetic detection source allowing measurements regularly-distributed in a circle around an axis at predetermined measurement positions. An exemplary locator comprises a casing (26) provided with a mechanism for detecting and analyzing the magnetic field of the magnetic dipole of the valve. It comprises:—a magnetic detection source (36) able to detect and measure the magnetic field of the magnetic center of the valve at predetermined measurement positions distributed in a circle around an axis (X-X?), linked to—a microprocessor (32) for analyzing the measurements and for generating detection signals.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: January 14, 2014
    Assignee: Sophysa
    Inventors: Philippe Negre, Christophe Boyer, Sylvain Morel, Christophe Moureaux