Patents Examined by Katherine Fernandez
  • Patent number: 9392976
    Abstract: A physiological monitoring system may process a physiological signal such a photoplethysmograph signal from a subject. The system may determine physiological information, such as a physiological rate, from the physiological signal. The system may use search techniques and qualification techniques to determine one or more initialization parameters. The initialization parameters may be used to calculate and qualify a physiological rate. The system may use signal conditioning to reduce noise in the physiological signal and to improve the determination of physiological information. The system may use qualification techniques to confirm determined physiological parameters. The system may also use autocorrelation techniques, cross-correlation techniques, fast start techniques, and/or reference waveforms when processing the physiological signal.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: July 19, 2016
    Assignee: Covidien LP
    Inventors: Fernando Rodriguez-Llorente, Nicholas James Wooder
  • Patent number: 9392995
    Abstract: An ultrasound imaging system and method includes acquiring motion data for a region-of-interest (ROI). The system and method includes calculating a quality parameter based on the motion data, wherein the quality parameter represents an amount of unwanted motion in the ROI. The system and method includes performing an action based on the quality parameter.
    Type: Grant
    Filed: July 25, 2012
    Date of Patent: July 19, 2016
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Christian Fritz Perrey, Daniel John Buckton, Peter Falkensammer
  • Patent number: 9386942
    Abstract: Apparatus, systems, and methods are provided for localizing lesions within a patient's body, e.g., within a breast. The system may include one or more markers implantable within or around the target tissue region, and a probe for transmitting and receiving electromagnetic signals to detect the one or more markers. During use, the marker(s) are into a target tissue region, and the probe is placed against the patient's skin to detect and localize the marker(s). A tissue specimen, including the lesion and the marker(s), is then removed from the target tissue region based at least in part on the localization information from the probe.
    Type: Grant
    Filed: March 21, 2011
    Date of Patent: July 12, 2016
    Assignee: CIANNA MEDICAL, INC.
    Inventors: Eduardo Chi Sing, Tommy G. Nguyen, Luis Urquidi
  • Patent number: 9380999
    Abstract: According to one embodiment, there is provided an ultrasonic diagnostic apparatus includes a data acquisition unit configured to scan a three-dimensional region in a subject having a contrast agent injected therein over a predetermined period by using ultrasonic waves and to thereby acquire ultrasonic data concerning the three-dimensional region over the predetermined period, a volume data generation unit configured to generate first volume data in each time phase in an analysis period by using the ultrasonic data concerning the three-dimensional region over the analysis period in the predetermined period and to generate second volume data indicative of contrast agent temporal information about the analysis period and third volume data indicative of a contrast agent characteristic amount at each position in the three-dimensional region in the analysis period, and an image generation unit configured to generate a projected image by using the second volume data and the third volume data.
    Type: Grant
    Filed: March 29, 2011
    Date of Patent: July 5, 2016
    Assignees: KABUSHIKI KAISHA TOSHIBA, Toshiba Medical Systems Corporation
    Inventors: Tetsuya Yoshida, Itsuki Kuga
  • Patent number: 9378331
    Abstract: Annotations of medical images may be generated using one or more lexicons so that terminology is consistent across multiple exams, users, facilities, etc. Measurements of lesions may be provided using a bilinear measurement tool that allows easier bilinear measurements. Disease assessment models may be selected and applied as measurements are acquired in order to provide immediate determination of disease staging according to one or more selected assessment models.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: June 28, 2016
    Assignee: D.R. Systems, Inc.
    Inventor: Murray A. Reicher
  • Patent number: 9375287
    Abstract: A marker device that aids in the subsequent identification of a particular area is equipped with an anchoring device that prevents migration once placed in the tissue of that particular area. The device may include a chemical agent or drug that adds a therapeutic function to the marker device.
    Type: Grant
    Filed: January 29, 2009
    Date of Patent: June 28, 2016
    Assignee: Covidien LP
    Inventors: Shai Fitelzon, Paige B. Hastings, David J. McKinley
  • Patent number: 9375754
    Abstract: In a laminated piezoelectric body, a laminated piezoelectric body manufacturing method, an ultrasound transducer, and an ultrasound diagnostic device according to the present invention, a plurality of mutually laminated piezoelectric bodies are electrically connected in parallel to each other, and each of the plurality of piezoelectric bodies arranges an orientation of residual polarization or a crystal axis that is related to an electrical displacement or a sign of an electric field due to a direct piezoelectric effect in a direction which reduces sensitivity in a first resonance mode and increases sensitivity in a second resonance mode of a higher order than the first resonance mode with respect to an axis of a first-level piezoelectric body on a fixed end-side.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: June 28, 2016
    Assignee: KONICA MINOLTA MEDICAL & GRAPHIC, INC.
    Inventors: Yuichi Nishikubo, Kenji Ohnuma, Kiyokazu Morita, Kenji Suzuki, Hidekazu Kodama, Munehiro Date
  • Patent number: 9366378
    Abstract: A transducer connects with a support arm. The support arm supports only some of the weight, even in a locked state. By only supporting a portion or less than all of the weight, the support arm allows downward movement or pressure, but less than the pressure applied without any resistance for the gravity acting on the support arm. The pressure maintains contact between the patient and the transducer for scanning.
    Type: Grant
    Filed: February 11, 2009
    Date of Patent: June 14, 2016
    Assignees: Siemens Medical Solutions USA, Inc., Siemens Aktiengesellschaft
    Inventors: Martin Schmidt, Satchi Panda, Todd Pleake
  • Patent number: 9357978
    Abstract: An ultrasonic diagnostic imaging system acquires 3D data sets of the fetal heart by use of a gating signal synthesized from detected motion of the fetal heart. A sequence of temporally different echo signals are acquired from a location in the anatomy where motion representative of the heart cycle is to be estimated, such as a sample volume in the fetal carotid artery or an M line through the fetal myocardium. A heart cycle signal is synthesized from the detected motion and used to gate the acquisition of fetal heart image data at one or more desired phases of the fetal heart cycle. In an illustrated embodiment 3D data sets are acquired from multiple subvolumes, each over the full fetal heart cycle, then combined to produce a live 3D loop of the beating fetal heart.
    Type: Grant
    Filed: June 2, 2010
    Date of Patent: June 7, 2016
    Assignee: Koninklijke Philips N.V.
    Inventors: Alasdair Dow, Antoine Collet-Billon, James Jago, Lisa Kay Pumphrey, Paul R. Detmer
  • Patent number: 9351707
    Abstract: A first ultrasound pulse is applied to biological tissue to create shear waves in the biological tissue, a focused ultrasound pulse is transmitted into the biological tissue, one or more ultrasound signals is received from the biological tissue, and shear waves are detected in the biological tissue based on the received one or more ultrasound signals. At least one propagation property associated with the detected shear waves is determined, and the determined at least one propagation property is displayed.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: May 31, 2016
    Assignee: HITACHI ALOKA MEDICAL, LTD.
    Inventor: Tadashi Tamura
  • Patent number: 9345450
    Abstract: An ultrasound transducer for use in intra-vascular ultrasound (IVUS) imaging systems including a single crystal composite (SCC) layer is provided. The transducer has a front electrode on a side of the SCC layer; and a back electrode on the opposite side of the SCC layer. The SCC layer may have a dish shape including pillars made of a single crystal piezo-electric material embedded in a polymer matrix. Also provided is an ultrasound transducer as above, with the back electrode split into two electrodes electrically decoupled from one another. A method of forming an ultrasound transducer as above is also provided. An IVUS imaging system is provided, including an ultrasound transducer rotationally disposed within an elongate member; an actuator; and a control system controlling activation of the ultrasound transducer to facilitate imaging.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: May 24, 2016
    Assignee: Volcano Corporation
    Inventor: Paul Douglas Corl
  • Patent number: 9345451
    Abstract: A method of measuring propagation of a shear wave by using an ultrasound transducer includes generating a shear wave inside the object, setting a region of interest (ROI) on which propagation of the shear wave is to be observed, and determining a position of a second focus on which ultrasound signals are to be directed to obtain information about the ROI, irradiating the ultrasound signals toward the second focus, and receiving echo signals reflected from the ROI.
    Type: Grant
    Filed: May 28, 2013
    Date of Patent: May 24, 2016
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Hyoung-ki Lee, Dong-geon Kong
  • Patent number: 9345455
    Abstract: An ultrasonic diagnostic imaging system produces an image with an extended focal range by transmitting a plurality of beams spaced along an array for multiline reception. The receive multilines of a plurality of transmit beams are spatially aligned and are combined with phase adjustment between the respective receive multilines to prevent undesired phase cancellation. The combined multilines produce the effect of an extended transmit focus so that an image produced using the combined multilines exhibits an extended focal range. To prevent motion artifacts the multiline order is adjustable as a function of image motion.
    Type: Grant
    Filed: July 8, 2015
    Date of Patent: May 24, 2016
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Michael Burcher, Jean-Luc Robert
  • Patent number: 9326745
    Abstract: A dynamic diagnosis support information generation system includes: a radiation generator capable of irradiating a pulsed radiation; a radiation detector which is provided with a plurality of detecting elements arranged in two-dimension, detects the pulsed radiation irradiated from the radiation generator at each of the plurality of detecting elements and generates frame images successively; and an analysis section which calculates and outputs a feature value relating to a dynamic image of a subject based on a plurality of frame images generated by radiographing the subject by using the radiation generator and the radiation detector, wherein the analysis section calculates the feature value relating to the dynamic image of the subject by corresponding pixels to each others representing outputs of a detecting element at a same position in the radiation detector among the plurality of the frame images.
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: May 3, 2016
    Assignee: KONICA MINOLTA, INC.
    Inventors: Shintaro Muraoka, Tetsuo Shimada, Sho Noji
  • Patent number: 9327142
    Abstract: To implement a single-chip ultrasonic imaging solution, on-chip signal processing may be employed in the receive signal path to reduce data bandwidth and a high-speed serial data module may be used to move data for all received channels off-chip as digital data stream. The digitization of received signals on-chip allows advanced digital signal processing to be performed on-chip, and thus permits the full integration of an entire ultrasonic imaging system on a single semiconductor substrate. Various novel waveform generation techniques, transducer configuration and biasing methodologies, etc., are likewise disclosed. HIFU methods may additionally or alternatively be employed as a component of the “ultrasound-on-a-chip” solution disclosed herein.
    Type: Grant
    Filed: December 5, 2014
    Date of Patent: May 3, 2016
    Assignee: Butterfly Network, Inc.
    Inventors: Jonathan M. Rothberg, Keith G. Fife, Tyler S. Ralston, Gregory L. Charvat, Nevada J. Sanchez
  • Patent number: 9314209
    Abstract: A physiological monitoring system may determine physiological information, such as physiological rate information, from a physiological signal. The system may generate a correlation sequence between two segments of the physiological signal at multiple correlation lag values. The system may compare the correlation sequence to a predetermined threshold, which may vary as a function of lag. Based on the comparison, the system may determine whether the correlation sequence value exceeds the threshold, and whether the correlation sequence value corresponds to a peak. The system may identify a lag value when the correlation sequence corresponding to the lag value exceeds the threshold and corresponds to a peak. The system may determine physiological rate information based on the identified lag value.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: April 19, 2016
    Assignee: Covidien LP
    Inventors: Fernando Rodriguez-Llorente, Pirow Engelbrecht, Nicholas James Wooder
  • Patent number: 9314223
    Abstract: Elements in an ultrasound array are activated according to a transmit beamformer to create a series of transmit beams. For each transmit beam, the first stage of a receive beamformer determines a plurality of primary receive beams. A second beamformer stage then computes secondary receive beams as a function of the primary receive beams that correspond to return signals from different transmit beams to a common receive beam origin. For example, each secondary receive beam may be calculated as a function of the weighted, time-delayed sum of the primary receive beams. At least one of the secondary receive beams is then output from the beamformer to be used in creating a displayed image.
    Type: Grant
    Filed: October 23, 2007
    Date of Patent: April 19, 2016
    Assignee: SHENZHEN MINDRAY BIO-MEDICAL ELECTRONICS CO., LTD.
    Inventor: Linxin Yao
  • Patent number: 9307925
    Abstract: A method performed at a computer system having one or more processors and memory storing one or more programs for execution by the one or more processors is disclosed. The method includes accessing multiple images of a biological structure, generating an electrical property map of at least a portion of the biological structure in accordance with two or more of the multiple images, and providing at least a subset of the electrical property map.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: April 12, 2016
    Assignee: Aaken Laboratories
    Inventors: Michael J. Russell, David F. Wiley
  • Patent number: 9271654
    Abstract: A method of thermoacoustic imaging of an object includes providing thermoacoustic signals representing a mechanical wave response to a delivery of electromagnetic energy into the imaged object, reconstructing an energy deposition image representing a local energy absorption within the object based on the thermoacoustic signals, and decomposing the energy deposition image into a quantitative absorption image representing a distribution of a local absorption coefficient in the object and at least one further image component.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: March 1, 2016
    Assignee: Helmholtz Zentrum Munchen Deutsches Forschungszentrum fur Gesundheit und Umwelt (GmbH)
    Inventors: Daniel Razansky, Vasilis Ntziachristos, Amir Rosenthal
  • Patent number: 9265472
    Abstract: Methods, systems, services (Internet), computer programs and circuits provide rapid bone mineral density (BMD) measurements and/or osteoporosis information using an automated image analysis circuit that evaluates a hand X-ray of a patient from an X-ray device to generate a reliable bone density evaluation within about 15 minutes, typically within about 5 minutes with receipt of a hand X-ray, and more typically substantially instantaneous and under 1 minute. The automated image analysis circuit can reside on a remote preliminary review server.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: February 23, 2016
    Assignee: Sectra AB
    Inventors: Johan Kälvesten, Jakob Algulin