Patents Examined by Katherine Fernandez
  • Patent number: 9775649
    Abstract: A system (1010, 1110) for identifying a landmark is disclosed. The system includes a field generator (1016, 1116) for generating a magnetic field, an orthopedic implant (1030, 1130) located within the magnetic field, the implant having at least one landmark (1028, 1128), a removable probe (1029, 1129) with a first magnetic sensor (1026, 1126), a landmark identifier (1016, 1116) with a second magnetic sensor (1020, 1120) and a processor (1012, 1112) for comparing sensor data from the first and second sensor and using the set distance to calculate the position of the landmark identifier relative to the at least one landmark. The system allows for blind targeting of one or more landmarks.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: October 3, 2017
    Assignee: Smith & Nephew, Inc.
    Inventors: James K. Rains, Nicholas S. Ritchey, Gene Edward Austin, Nathaniel Kelley Grusin, Sied W. Janna, Charles C. Heotis
  • Patent number: 9775584
    Abstract: In an ultrasound probe according to an embodiment, a first ultrasound transducer array scans a first scanned plane. A second ultrasound transducer array engages with the first ultrasound transducer array, is provided so as to intersect the first ultrasound transducer array, and scans a second scanned plane different from the first scanned plane. A probe main body is provided with the first ultrasound transducer array and the second ultrasound transducer array, has an opening in a position where the first and the second ultrasound transducer arrays intersect each other, and has a through hole extending to the opening. An engaging part that causes the first and the second ultrasound transducer arrays to engage with each other is configured in such a manner that the angle at which the first and the second ultrasound transducer arrays intersect each other is changeable.
    Type: Grant
    Filed: January 30, 2014
    Date of Patent: October 3, 2017
    Assignee: Toshiba Medical Systems Corporation
    Inventors: Cong Yao, Naohisa Kamiyama, Tatsuro Baba, Tetsuya Yoshida
  • Patent number: 9772389
    Abstract: In a method and magnetic resonance apparatus to acquire diagnostic image data of a contrast agent-filled target area of a patient, a peak time of the test bolus in the target area is automatically determined, from which a wait period is then determined for administering the main bolus. After the main bolus has been administered to the patient, magnetic resonance images of the target area are acquired, and each is analyzed immediately after acquisition thereof to determine whether that image shows arrival of the contrast agent. If and when one of these images shows such arrival, an acquisition protocol is immediately started in order to acquire the diagnostic image data set. If none of these images shows arrival of the contrast agent, the protocol to acquire diagnostic image data is started after the wait period.
    Type: Grant
    Filed: June 11, 2014
    Date of Patent: September 26, 2017
    Assignee: Siemens Aktiengesellschaft
    Inventors: Manuela Rick, Peter Schmitt, Andre de Oliveira
  • Patent number: 9770173
    Abstract: The invention is directed to a hyperspectral/multispectral system referred to as the OxyVu-1 system. The hyperspectral imaging technology performs spectral analysis at each point in a two-dimensional scanned area producing an image displaying information derived from the analysis. For the OxyVu-1 system, the spectral analytical methods determined in superficial tissues approximate values of oxygen saturation (HT-Sat), oxyhemoglobin levels (HT-Oxy), and deoxyhemoglobin levels (HT-Deoxy). The OxyVu-1 system displays the tissue oxygenation in a two-dimensional, color-coded image. The system contains a system console, a cart, system electronics, CPU, monitor, keyboard, pointing device and printer. The hyperspectral instrument head with support arm contains broadband illuminator, camera and spectral filter for collecting hyperspectral imaging cube. The single use OxyVu Check Pads and Targets are used to perform an instrument check prior to patient measurements.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: September 26, 2017
    Assignee: Hypermed Imaging, Inc.
    Inventors: Svetlana Panasyuk, Jenny Freeman, Kevin Schomacker, Richard Lifsitz
  • Patent number: 9770607
    Abstract: A system and method for fluid control in a thermal therapy system is disclosed. A fluid circuit permits passage of a fluid through a fluid circuit, including into and out of a treatment zone so as to cool or heat or maintain a temperature in said treatment zone at or near a desired temperature. The temperature is sensed at a point in the circuit between a discharge of a fluid pump and the treatment zone. MRI based thermometry of tissue in the treatment zone is accomplished in some aspects. Furthermore, a desired temperature may be programmably set to a given value or within a band of values using a processor and a temperature controller. In some aspects, leakage of fluid from a patient or from the fluid control system is captured by a leak-proof member to protect imaging and treatment equipment from damage.
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: September 26, 2017
    Assignee: Profound Medical Inc.
    Inventors: Cameron Mahon, Sean Donaldson
  • Patent number: 9766313
    Abstract: The invention relates to a method of CEST or APT MR imaging of at least a portion of a body (10) placed in a main magnetic field B0 within the examination volume of a MR device. The method of the invention comprises the following steps: •a) subjecting the portion of the body (10) to a saturation RF pulse at a saturation frequency offset; •b) subjecting the portion of the body (10) to an imaging sequence comprising at least one excitation/refocusing RF pulse and switched magnetic field gradients, whereby MR signals are acquired from the portion of the body (10) as spin echo signals; •c) repeating steps a) and b) two or more times, wherein the saturation frequency offset and/or a echo time shift in the imaging sequence are varied, such that a different combination of saturation frequency offset and echo time shift is applied in two or more of the repetitions; •d) reconstructing a MR image and/or B0 field homogeneity corrected APT/CEST images from the acquired MR signals.
    Type: Grant
    Filed: March 21, 2013
    Date of Patent: September 19, 2017
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Holger Eggers, Jochen Keupp
  • Patent number: 9743858
    Abstract: The present invention discloses an apparatus and a method for determining a trigger timing of a CE-MRA scan. The apparatus comprises: a blood flow velocity acquisition unit configured to acquire a blood flow velocity of a target vessel; and a trigger timing determination unit configured to determine the trigger timing for performing the CE-MAR scan on a CE-MRA scan region according to the blood flow velocity and a predetermined image acquisition condition during a monitoring scan. The apparatus and method take the blood flow velocity into consideration, and can determine the trigger timing of the CE-MRA scan automatically and accurately.
    Type: Grant
    Filed: November 23, 2012
    Date of Patent: August 29, 2017
    Assignee: Toshiba Medical Systems Corporation
    Inventors: Lijun Zhang, Ye Liu, Kensuke Shinoda, Kiyomi Ooshima
  • Patent number: 9737357
    Abstract: An endoscopic bipolar forceps includes an elongated shaft having opposing jaw members at a distal end thereof. The jaw members are movable relative to one another from a first position wherein the jaw members are disposed in spaced relation relative to one another to a second position wherein the jaw members cooperate to grasp tissue therebetween. The forceps also includes a source of electrical energy connected to each jaw member such that the jaw members are capable of conducting energy through tissue held therebetween to effect a seal. A generally tube-like cutter is included which is slidably engaged about the elongated shaft and which is selectively movable about the elongated shaft to engage and cut tissue on at least one side of the jaw members while the tissue is engaged between jaw members.
    Type: Grant
    Filed: September 24, 2013
    Date of Patent: August 22, 2017
    Assignee: Covidien AG
    Inventors: Sean T. Dycus, Darion R. Peterson
  • Patent number: 9737216
    Abstract: An object information acquiring apparatus comprises a light irradiation unit that irradiates an object with pulsed light; a probe that converts an acoustic wave generated in the object due to first pulsed light into an acoustic wave signal; a photo-detection unit that converts second pulsed light propagated through the object into an optical signal; a frequency analysis unit that acquires a background optical coefficient with respect to the inside of the object on the basis of a predetermined frequency component of the optical signal; a light intensity acquiring unit that acquires a distribution of light intensity of the first pulsed light reaching the inside of the object using the background optical coefficient; and an information acquiring unit that acquires object information, using the acoustic wave signal and the distribution of light intensity.
    Type: Grant
    Filed: June 13, 2014
    Date of Patent: August 22, 2017
    Assignee: CANON KABUSHIKI KAISHA
    Inventor: Ryuichi Nanaumi
  • Patent number: 9731323
    Abstract: The use of power-efficient transmitters to establish acoustic wave energy having low undesirable harmonics is achieved by adjusting the transmitter output waveform to minimize the undesirable harmonics. In one embodiment, both the timing and slope of the waveform edges are adjusted to produce the desired output waveform having little or no second harmonics. In the embodiment, output waveform timing adjustments on the order of fractions of the system clock interval are provided. This then allows for very fine control of a coarsely produced waveform. In one embodiment, the user can select the fine tuning to match the transmitter output signal to a particular load transducer.
    Type: Grant
    Filed: October 19, 2015
    Date of Patent: August 15, 2017
    Assignee: FUJIFILM SonoSite, Inc.
    Inventors: John R. Stice, Yanwei Wang, Clinton T. Siedenburg, Andrew K. Lundberg, Justin Coughlin, Max Nielsen
  • Patent number: 9700741
    Abstract: A radiation therapy apparatus includes a radiation source and a ring shaped gantry. The gantry includes a static ring component and a dynamic ring component upon which the radiation source is mounted, the dynamic ring component is rotatable about its center and is provided in multiple arcuate parts that can be assembled together to form the dynamic ring component.
    Type: Grant
    Filed: October 27, 2014
    Date of Patent: July 11, 2017
    Assignee: Elekta AB (Publ)
    Inventors: Philip Lee Arber, Joseph Hubert Marie Habets, Clifford William Perkins
  • Patent number: 9700280
    Abstract: Methods and apparatus are provided for electrically addressing multiple ultrasonic transducers that are connected to a common electrical channel and housed within an imaging probe. An imaging probe may comprise an imaging ultrasonic transducer and a moveable element for controlling the direction of an emitted imaging beam, and an angle sensing ultrasonic transducer, where the angle sensing ultrasonic transducer is configured for determining the direction of an ultrasonic imaging beam. The angle-sensing transducer may be configured to direct an angle sensing ultrasonic beam towards an acoustically reflective substrate and provide a signal by detecting a reflected ultrasonic beam reflected from the acoustically reflective substrate, where the acoustically reflective substrate is positioned relative to the movable element such that motion of the movable element produces a change in the signal.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: July 11, 2017
    Assignee: SUNNYBROOK HEALTH SCIENCES CENTRE
    Inventors: Brian Courtney, Amandeep Thind
  • Patent number: 9693690
    Abstract: A digital electronic fetal heart rate and uterine contraction monitoring system with an electronic fetal monitor, a contraction monitoring sensor and a fetal heart rate sensor. A controller configured to receive fetal heart rate data and uterine contraction pressure, identify a contraction start time and end time, and calculate each rest interval in seconds between contractions. The system compares rest intervals to a safe preset limit for rest intervals, calculates a median rest interval and an average rest interval for each fifteen-minute period of labor, and presents a contraction and rest interval graph to a display. The system can activate an alarm on an electronic fetal monitor display or a third party display and can pause a pump that is delivering a drug to increase uterine contractions when a significant criteria of excessive uterine activity is detected outside preset limits to assure adequate blood flow to the fetal brain.
    Type: Grant
    Filed: March 16, 2016
    Date of Patent: July 4, 2017
    Inventor: Stewart Bruce Ater
  • Patent number: 9693755
    Abstract: An ultrasound diagnostic device for measuring a carotid artery wall property includes a transmission-reception processor, a transverse cross-sectional image generator, a transverse cross-sectional image selector, and a relative angle calculator. The transmission-reception processor performs transmission and reception processing of ultrasound with respect to the carotid artery. The transverse cross-sectional image generator generates transverse cross-sectional images based on reception signals for carotid artery cross-sections at different positions. Each generated image depicts a carotid artery transverse cross-section perpendicular to a longitudinal direction. The transverse cross-sectional image selector selects a specific image among the generated images that depicts ICA and ECA cross-sections.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: July 4, 2017
    Assignee: KONICA MINOLTA, INC.
    Inventor: Youichi Kondoh
  • Patent number: 9693754
    Abstract: Systems and methods for image processing based on ultrasound data. The system may include an IVUS catheter configured to collect data vectors including ultrasound data and an imaging engine configured to process the ultrasound data of the data vectors. The imaging engine may receive the data vectors and divide the data vectors into different sets. The ultrasound data of each respective set may be averaged and then an envelope of each set may be detected. The envelopes of each set may then be averaged to generate an enhanced data vector which may be used to generate an image.
    Type: Grant
    Filed: May 15, 2013
    Date of Patent: July 4, 2017
    Assignee: ACIST Medical Systems, Inc.
    Inventors: Duc H. Lam, Thomas C. Moore, Kendall R. Waters
  • Patent number: 9693752
    Abstract: A method of correlating sonic activity with electric activity in an entity of interest includes interrogating, via a sonic sensor device, the physical structure, shape and/or form of an object in the entity of interest, interrogating, via an electric field sensor, the electric and/or magnetic potential associated with the object or the physical displacement of the geo-electric field by the object while avoiding resistive contact with other portions of the entity of interest, and linking results from the sonic sensor device to results from the electric field sensor.
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: July 4, 2017
    Assignee: RESCON LTD
    Inventor: Thomas Andrew Dawson
  • Patent number: 9687174
    Abstract: A medical device position guidance system having a noninvasive medical device communicable with an invasive medical device. The system provides outputs useful to assess the position of an invasive medical device in an animal, such as a human. A magnetic field is used to gather information about the position of the invasive device. Radio waves are used to communicate this information between the noninvasive device and the invasive device.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: June 27, 2017
    Assignee: Corpak Medsystems, Inc.
    Inventors: David S. Jaggi, Donald A. Kay, Joseph P. Killam, Salvatore Manzella, Jr., King Y. Moy, David K. Platt, Shawn G. Purnell, Alan R. Shapiro, Michael C. Shaughnessy, Mark C. Witt, Christopher Zachara
  • Patent number: 9675323
    Abstract: There are disclosed embodiments of devices and methods for imaging the inside of a body part, particularly a blood vessel. In particular embodiments, a catheter has a tip chamber, within which is an ultrasound transducer mounted on a pivot mechanism, a motor for turning the transducer, and an implement for pivoting the transducer. Examples of such an implement are a linear motor, a shaft or filament, and the pivot mechanism may be biased to return to a base position when the implement is not pivoting the transducer. In other embodiments, a mirror reflecting ultrasound signals from the transducer may be rotated and/or pivoted, using similar mechanisms.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: June 13, 2017
    Assignee: Muffin Incorporated
    Inventors: Peter S. McKinnis, Yun Zhou, Sarah Robbins, Neal E. Fearnot
  • Patent number: 9675420
    Abstract: Methods and apparatus assist in planning routes through hollow, branching organs in patients to optimize subsequent endoscopic procedures. Information is provided about the organ and a follow-on endoscopic procedure associated with the organ. The most appropriate navigable route or routes to a target region of interest (ROI) within the organ are then identified given anatomical, endoscopic-device, or procedure-specific constraints derived from the information provided. The method may include the step of modifying the viewing direction at each site along a route to give physically meaningful navigation directions or to reflect the requirements of a follow-on live endoscopic procedure. An existing route may further be extended, if necessary, to an ROI beyond the organ. The information provided may include anatomical constraints that define locations or organs to avoid; anatomical constraints that confine the route within specific geometric locations; or a metric for selecting the most appropriate route.
    Type: Grant
    Filed: May 18, 2015
    Date of Patent: June 13, 2017
    Assignee: The Penn State Research Foundation
    Inventors: William E. Higgins, Jason D. Gibbs
  • Patent number: 9675320
    Abstract: In tomographic image data, a reference region-setting unit (30) sets a body reference region for the body of a fetus and sets a cardiac reference region for the heart of the fetus. A body shift analysis unit (50) analyzes the movement of the fetus' body in the tomographic image data using the body reference region and obtains body shift information. A cardiac motion analysis unit (60) analyzes the movement of the fetus' heart in the tomographic image data using the cardiac reference region and obtains cardiac motion information. Once body shift information and cardiac motion information are obtained in this manner, a pulse information-processing unit (70) obtains fetal pulse information on the basis of the cardiac motion information from which the body shift information has been subtracted. The pulse information obtained by the pulse information-processing unit (70) is displayed on the display unit (80).
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: June 13, 2017
    Assignee: Hitachi, Ltd.
    Inventors: Masahiko Nakata, Eiji Kasahara, Masaru Murashita