Patents Examined by Katherine Fernandez
  • Patent number: 9579057
    Abstract: Apparatus and associated methods relate to method of determining a treatment plan with Botulinum Toxin (BT) and other procedures able to modify facial expressions, the method includes using a series of facial images of a patient eliciting various expressions to select individual expressive features as candidates for modification, the selected expressive features mapping to muscles that are used to create such expressive features, the muscles mapping into related expressive features of facial images of the patient eliciting different expressions, the related expressive features being weighted so as to provide further information used in determining an optimum treatment dosing for each treatment location. In an illustrative example, the method may include mapping the facial image of the patient to a model image using facial markers. In an exemplary embodiment, the method may advantageously provide a treatment that results in optimum expressive features as revealed in many different expressions.
    Type: Grant
    Filed: December 9, 2013
    Date of Patent: February 28, 2017
    Inventor: Stefan Bradu
  • Patent number: 9579161
    Abstract: A system for tracking a patient is provided. The system can include a first reference frame coupled to a first portion of an anatomical structure. The system can include a second reference frame, which can be coupled to a second portion of the anatomical structure. The system can also include a first tracking device coupled to the first reference frame and a second tracking device coupled to the second reference frame. The system can also include a tracking system that can track a position of the first tracking device and the second tracking device to ensure that the position of the first reference frame relative to the anatomical structure is substantially the same throughout a surgical procedure.
    Type: Grant
    Filed: May 6, 2008
    Date of Patent: February 28, 2017
    Assignee: Medtronic Navigation, Inc.
    Inventors: Steven L. Hartmann, Laurent Verard, James Kelley, Kenneth Gardeski, Kevin Thomas Wu, Michael Neidert
  • Patent number: 9579120
    Abstract: A hand-held apparatus can be used to assist in guiding a probe or locating a particular anatomical target in a subject. The apparatus can include an ultrasonic transducer located on or within a housing and configured to generate ultrasonic energy directed into tissue of a subject and configured to receive a portion of the ultrasonic energy reflected by a target located within the tissue. In an example, the apparatus can include a motion tracking circuit configured to provide information indicative of a motion of the hand-held apparatus to the processor circuit, and a display configured to present information about a location of the target with respect to a portion of the hand-held apparatus, the information about the location determined by the processor circuit using the obtained information indicative of the ultrasonic energy reflected by the target and the information indicative of the motion of the hand-held apparatus.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: February 28, 2017
    Assignee: University of Virginia Patent Foundation
    Inventors: F. William Mauldin, Jr., Francesco Viola, William F. Walker
  • Patent number: 9572511
    Abstract: A method for monitoring an intrabody region of a patient. The method comprises intercepting electromagnetic (EM) radiation from the intrabody region in a plurality of EM radiation sessions during a period of at least 6 hours, calculating a dielectric related change of the intrabody region by analyzing respective the intercepted EM radiation, detecting a physiological pattern according to said dielectric related change. and outputting a notification indicating the physiological pattern.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: February 21, 2017
    Assignee: Sensible Medical Innovations Ltd.
    Inventors: Ilan Kochba, Dan Rappaport, Amir Saroka, Shlomi Bergida, Nadav Mizrahi, Amir Ronen
  • Patent number: 9572515
    Abstract: An apparatus for magnetic resonance imaging includes a magnet, a patient support, and a contoured quadrature coil. The contoured quadrature coil includes a ring coil and an angled butterfly coil. The angled butterfly coil may have a front outer section, an inner section, and a back outer section. The front outer section and the back outer section may be oriented diagonally from the plane of the ring coil such that a portion of the front outer section and/or the back outer section are disposed above the plane of the ring coil and a portion of the front outer section and/or the back outer section are disposed below the plane of the ring coil. Thus, the planes of the front and back outer sections may be angled with respect to each other, and the inner section may be substantially pyramidal and disposed along or below the plane of the ring coil.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: February 21, 2017
    Assignee: Fonar Corporation
    Inventor: Charles A. Green
  • Patent number: 9568598
    Abstract: An ultrasonic diagnostic apparatus comprises an ultrasonic probe configured to transmit ultrasound to a test body and receive an echo signal, an image generation unit configured to generate a plurality of tomograms with respect to the test body based on the echo signal, an image memory configured to record the generated tomograms, and a control processor. The control processor performs control such that image processing of extracting a microstructure is performed, using correlation between a tomogram stored in the image memory and a tomogram corresponding to a position of the ultrasonic probe at that point in time. The microstructure-extracted image is displayed on the display part in a predetermined form.
    Type: Grant
    Filed: June 15, 2009
    Date of Patent: February 14, 2017
    Assignee: Toshiba Medical Systems Corporation
    Inventors: Yoko Okamura, Naohisa Kamiyama
  • Patent number: 9545217
    Abstract: Provided are methods and systems for movement correction in an MRI environment. In one aspect, provided are systems and methods for movement correction, comprising receiving a first plurality of images from a first scan of a subject with a first camera, receiving magnetic resonance imaging (MRI) images obtained concurrently with the first scan, correlating the first plurality of images obtained from the first scan with the MRI images, resulting in motion correction data, and providing the motion correction data to an MRI system, wherein the MRI system adjusts scanning according to the motion correction data.
    Type: Grant
    Filed: April 17, 2009
    Date of Patent: January 17, 2017
    Assignee: The United States of America, as Represented by the Secretary, Department of Health and Human Services
    Inventors: Jeff Duyn, Lei Qin
  • Patent number: 9541615
    Abstract: A system and method for producing an image using a radio frequency (RF) coil in a magnetic resonance imaging system (MRI). A static magnetic field (B0) extends across a first and second region of interest (ROI). A local radio frequency (RF) coil, shaped like a dental arch, is positioned proximate to the ROIs, the ROIs being the upper and lower jaw of a subject. The RF coil and the subject are oriented in the static magnetic field (B0) to align an axis extending through a loop of the coil with the B0 direction of the static magnetic field extending across the ROIs. A pulse sequence is then performed with the MRI system and the RF coil to acquire imaging data from the ROIs simultaneously while using a transverse component of an excitation field (B1). The image data is reconstructed to create an image of the ROIs.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: January 10, 2017
    Assignee: Regents of the University of Minnesota
    Inventors: Djaudat Idiyatullin, Curt Corum, Michael Garwood, Donald Nixdorf, Gregor Adriany
  • Patent number: 9539025
    Abstract: A biopsy assembly for collecting tissue samples by means of a biopsy needle when introduced in a body cavity. The biopsy assembly comprises an elongated member (101), with a longitudinal axis (102), configured with: a first needle guide (203) arranged to guide a needle in a direction transverse to the longitudinal axis (102), and a second needle guide (204, 303) arranged to guide a needle in a direction along the elongated member (101).
    Type: Grant
    Filed: March 23, 2007
    Date of Patent: January 10, 2017
    Assignee: B-K Medical Aps
    Inventors: Per Ehrenreich Nygaard, Gert Karlsson, Tommy Bjørn Olsen, Bjørn Fortling, Lis Sørensen
  • Patent number: 9526401
    Abstract: Flow reduction hood systems are described which facilitate the visualization of tissue regions through a clear fluid. Such a system may include an imaging hood having one or more layers covering the distal opening and defines one or more apertures which control the infusion and controlled retention of the clearing fluid into the hood. In this manner, the amount of clearing fluid may be limited and the clarity of the imaging of the underlying tissue through the fluid within the hood may be maintained for relatively longer periods of time by inhibiting, delaying, or preventing the infusion of surrounding blood into the viewing field. The aperture size may be controlled to decrease or increase through selective inflation of the membrane or other mechanisms.
    Type: Grant
    Filed: January 16, 2013
    Date of Patent: December 27, 2016
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Vahid Saadat, Edmund Tam, Chris A. Rothe, David Miller, Ruey-Feng Peh
  • Patent number: 9521991
    Abstract: To implement a single-chip ultrasonic imaging solution, on-chip signal processing may be employed in the receive signal path to reduce data bandwidth and a high-speed serial data module may be used to move data for all received channels off-chip as digital data stream. The digitization of received signals on-chip allows advanced digital signal processing to be performed on-chip, and thus permits the full integration of an entire ultrasonic imaging system on a single semiconductor substrate. Various novel waveform generation techniques, transducer configuration and biasing methodologies, etc., are likewise disclosed. HIFU methods may additionally or alternatively be employed as a component of the “ultrasound-on-a-chip” solution disclosed herein.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: December 20, 2016
    Assignee: Butterfly Network, Inc.
    Inventors: Jonathan M. Rothberg, Keith G. Fife, Tyler S. Ralston, Gregory L. Charvat, Nevada J. Sanchez
  • Patent number: 9521985
    Abstract: A method for automatically detecting the presence of a contrast agent in an x-ray image includes acquiring a preliminary x-ray image. A background image is estimated. The contrast agent is administered. A plurality of image frames is acquired. The background image is subtracted from each image frame. An image having a highest image intensity is selected. A predefined shape model is fitted to the selected image using a semi-global optimization strategy. The fitting of the shape model is used to fit the shape model to each of the subtracted images. A feature value is calculated for each image frame based on pixel intensities of each pixel fitted to the shape model for the corresponding subtracted image. An image frame of peak contrast is determined by selecting the image frame with the greatest feature value.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: December 20, 2016
    Assignee: Siemens Healthcare GmbH
    Inventors: Rui Liao, Yinxiao Liu, Xudong Lv
  • Patent number: 9517021
    Abstract: A magnetic resonance imaging (MRI) system, method and/or apparatus is configured to effect MR imaging where data corresponding to MR signals is transmitted from a radio frequency (RF) receive coil to the MRI data processor via a path that includes a near-field wireless communication (NFC) connection. A receiver for the NFC connection is selected from of the one or more wireless signal receivers that are arranged on a restraining belt when the restraining belt is placed, during operation of an MRI system for imaging an object located on a patient table, over at least a portion of the object and the receive RF coil is located between the restraining belt and the object.
    Type: Grant
    Filed: September 23, 2013
    Date of Patent: December 13, 2016
    Assignee: TOSHIBA MEDICAL SYSTEMS CORPORATION
    Inventors: Robert Anderson, Yoshinori Hamamura
  • Patent number: 9517017
    Abstract: An anatomical mapping system includes a plurality of mapping electrodes, a plurality of mechanical sensors, and a mapping processor associated with the plurality of mapping electrodes and mechanical sensors. The mapping electrodes are configured to detect electrical activation signals of intrinsic physiological activity within an anatomical structure. The mechanical sensors are configured to detect mechanical activity associated with the intrinsic physiological activity. The mapping processor is configured to record the detected activation signals and associate one of the plurality of mapping electrodes and mechanical sensors with each recorded activation signal. The mapping processor is further configured to determine activation times of the intrinsic physiological activity based on a correlation of corresponding electrical activation signals and mechanical activity.
    Type: Grant
    Filed: January 14, 2014
    Date of Patent: December 13, 2016
    Assignee: Boston Scientific Scimed Inc.
    Inventors: Allan C. Shuros, Pramodsingh H. Thakur, Sunipa Saha, Barun Maskara, Shibaji Shome
  • Patent number: 9517049
    Abstract: An ultrasonic probe connected to an ultrasonic diagnostic apparatus having a display unit configured to display an ultrasonic image is provided. The ultrasonic probe includes a transducer array aligned in a predetermined direction for and configured to transmit an ultrasonic beam to a target object and receive a reflected ultrasonic beam, a probe display unit fixed to said ultrasonic probe and having a length at least as long as a length of said transducer array, and a display control unit configured to, based on a specific information specified in the ultrasonic image displayed on the image display unit, display a corresponding position of the specific information on said probe display unit.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: December 13, 2016
    Assignee: General Electric Company
    Inventors: Mitsuhiro Nozaki, Masafumi Ogasawara
  • Patent number: 9510797
    Abstract: In the integrated PET/MRI scanner provided with an RF coil for MRI and a plurality of PET detectors in the measuring port of the MRI scanner, the PET detectors are disposed with spaces therebetween and at least the transmitting coil elements of the RF coil for MRI are disposed between adjacent PET detectors. Here, the PET detectors are disposed in the circumferential direction of the measuring port with spaces therebetween and the transmitting coil elements are disposed in the axial direction of the measuring port. Alternatively, at least some of the PET detectors are disposed in the axial direction of the measuring port with spaces therebetween and the transmitting coil elements are disposed between adjacent PET detectors. The PET detectors can be DOI-type detectors capable of detecting position in the depth direction.
    Type: Grant
    Filed: October 25, 2010
    Date of Patent: December 6, 2016
    Assignees: NATIONAL INSTITUTE OF RADIOLOGICAL SICENCES, HAMAMATSU PHOTONICS K.K.
    Inventors: Taiga Yamaya, Fumihiko Nishikido, Takayuki Obata, Mikio Suga, Kazuyuki Saito, Mitsuo Watanabe, Eiichi Tanaka
  • Patent number: 9510731
    Abstract: An ultrasound endoscope includes an insertion portion that is inserted into a subject, an ultrasound transducer portion that is arranged at a distal end portion of the insertion portion and includes an ultrasound transmitting and receiving surface for transmitting and receiving ultrasound, a first balloon groove that is a groove formed between the insertion portion and the ultrasound transducer portion and is for locking a balloon that covers the ultrasound transmitting and receiving, a distal end face that is arranged on a distal end side with respect to the ultrasound transducer portion and is disposed spaced apart from the ultrasound transmitting and receiving surface, and a convex portion that is provided on the distal end face and on which stress concentrates when a finger is slid on the distal end face.
    Type: Grant
    Filed: March 4, 2015
    Date of Patent: December 6, 2016
    Assignee: OLYMPUS CORPORATION
    Inventor: Takanao Fujimura
  • Patent number: 9513368
    Abstract: Methods and systems for ultrasound data processing are provided. One method includes acquiring channel ultrasound data from a plurality of channel connected to a plurality of elements of an ultrasound probe and storing the channel ultrasound data from the plurality of channels. The method further includes generating ultrasound images based on processing of the acquired channel ultrasound data and displaying the ultrasound images. The method also includes performing additional processing on the stored channel ultrasound data while the ultrasound images are displayed and displaying updated ultrasound images generated by the additional processing.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: December 6, 2016
    Assignee: General Electric Company
    Inventors: Morris Ziv-Ari, Arcady Kempinski, Alexander Sokulin
  • Patent number: 9507000
    Abstract: A magnetic resonance system comprises a magnetic resonance scanner (10) including a main magnet (12) generating a static magnetic field biasing nuclear spins toward aligning along a direction of the static magnetic field, magnetic field gradient coils (14), a radio frequency coil (16), and a controller (20, 22) configured to: (a) drive the radio frequency coil to selectively tip spins predominantly of short T2* out of the direction of the static magnetic field; (b) drive at least one of the magnetic field gradient coils and the radio frequency coil to dephase said spins predominantly of short T2* tipped out of the direction of the static magnetic field; and (c) drive the magnetic field gradient coils and the radio frequency coil to acquire magnetic resonance data that is predominantly T2* weighted due to preceding operations (a) and (b).
    Type: Grant
    Filed: October 5, 2009
    Date of Patent: November 29, 2016
    Assignee: Koninklijke Philips N.V.
    Inventors: Christian Stehning, Jurgen Erwin Rahmer, Stefanie Remmele, Ulrike Blume, Tobias Richard Schaeffter
  • Patent number: 9504404
    Abstract: A high-performance, broad-band antenna that is small enough to be used in an array for biomedical imaging, yet has an aperture large enough to allow operations in the 1 GHz to 2.7 GHz frequency range. The present antenna advantageously uses a Vivaldi antenna with unique lobe designs to provide a small antenna that provides excellent near field imaging. The ends of each lobe have a tilted half-disc shape that increases the aperture of the antenna without increasing overall size. Other unique features of the lobes include exponential structures and an impedance matching design. Multiple units of the present antipodal Vivaldi antenna can be used in an array of antennas. Such an array, or stack or multiple arrays, can be used in many microwave applications for biomedical imaging.
    Type: Grant
    Filed: October 15, 2013
    Date of Patent: November 29, 2016
    Assignee: THE UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE
    Inventors: Wenyi Shao, Ryan S. Adams