Patents Examined by Kathleen Duda
  • Patent number: 9651870
    Abstract: A tool and a method of lithography are provided. In various embodiments, the method of lithography includes forming a photoresist layer on a substrate. The method further includes exposing the photoresist layer to form an exposed photoresist layer. The method further includes rinsing the exposed photoresist layer. The method further includes treating the exposed photoresist layer with a chemical modifier to form a modified photoresist layer. The method further includes baking the modified photoresist layer. The method further includes developing the modified photoresist layer.
    Type: Grant
    Filed: April 28, 2014
    Date of Patent: May 16, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Tsung-Pao Chen, Sheng-Min Chuang, Teng-Kuei Chuang
  • Patent number: 9645497
    Abstract: A method for lithography patterning includes providing a substrate; forming a material layer over the substrate; exposing the material layer to a radiation, resulting in an exposed material layer; and removing a portion of the exposed material layer in a developer, resulting in a patterned material layer. The developer is an alkaline aqueous solution having an organic base that is a quaternary ammonium hydroxide. In an embodiment, the organic base has a bulky group in its side chain, reducing its etching distance. In another embodiment, the organic base includes electron withdrawing groups, reducing its basicity. In yet another embodiment, the developer has a loading of the quaternary amine ranging from about 0.01% to about 2.37%. The developer results in reduced line edge roughness and reduced line width roughness in the patterned material layer.
    Type: Grant
    Filed: October 31, 2014
    Date of Patent: May 9, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Lilin Chang, Ching-Yu Chang
  • Patent number: 9645495
    Abstract: Resist compositions for photosensitive chemically amplified resist processing, as well as methods for processing substrates using a photosensitive chemically amplified resist are disclosed for improved CD uniformity. A resist composition or layer generates photosensitizer when the resist is exposed to a first wavelength of light. A second wavelength of light is later used to amplify an acid reaction. The radiation-sensitive layer also includes a photo-active agent that, when exposed to a third light wavelength, modifies a concentration of photosensitizer in the radiation-sensitive layer. The third light wavelength can be projected as a pattern of radiation using a digital pixel-based projection system, with the projected pattern based on a critical dimension signature. In a subsequent exposure step, the resist layer is exposed to light of the second wavelength that induces or amplifies the acid concentration within the photoresist film.
    Type: Grant
    Filed: August 3, 2015
    Date of Patent: May 9, 2017
    Assignee: Tokyo Electron Limited
    Inventor: Anton J. deVilliers
  • Patent number: 9632308
    Abstract: A microelectromechanical system (MEMS) is comprised of a micromirror device attached to a semiconductor device. A first spacer layer is formed and patterned to form hinge via openings. A hinge metal is deposited above the first spacer layer to form the hinge and the hinge vias. A capping layer is formed above the hinge metal and hinge vias. A second spacer layer is formed above the capping layer and patterned to form a mirror via. The capping layer protects the hinge metal from the developer solution used in the patterning step. The capping layer is removed from within the mirror via opening. Another metal layer is deposited above the second spacer layer to form the mirror and the mirror via.
    Type: Grant
    Filed: April 13, 2015
    Date of Patent: April 25, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Sean Christopher O'Brien
  • Patent number: 9625820
    Abstract: A method of patterning a thin film includes steps as follows. The thin film is formed. The thin film includes a plurality of first molecules, and each of the first molecules has a conjugated structure. A mask is covered on the thin film. The mask includes at least one exposing area, and the exposing area is correspondent to an illuminated region of the thin film. A solvent annealing and illuminating step is conducted, wherein the thin film covered by the mask is illuminated with a light source under an atmosphere of a first solvent, and a wavelength range of the light source is correspondent to an energy enabling the first molecules to reach an excited state. Thus a thickness of the illuminated region of the thin film is increased or decreased so as to form a pattern on the thin film.
    Type: Grant
    Filed: June 7, 2015
    Date of Patent: April 18, 2017
    Assignee: NATIONAL TSING HUA UNIVERSITY
    Inventors: Arnold Chang-Mou Yang, Wei-Chun Chen
  • Patent number: 9588414
    Abstract: Various embodiments provide photomask patterns and methods for forming the same. In an exemplary method, a to-be-etched pattern can be provided. The to-be-etched pattern can be divided into a first mask pattern and an initial second mask pattern. The first mask pattern can include one or more first patterns and the initial second mask pattern can include one or more second patterns. A second print scattering pattern can be formed and added to the initial second mask pattern. A position of the second print scattering pattern can be separated from a position of the one or more first patterns of the first mask pattern.
    Type: Grant
    Filed: July 16, 2014
    Date of Patent: March 7, 2017
    Assignee: SEMICONDUCTOR MANUFACTURING INTERNATIONAL (SHANGHAI) CORPORATION
    Inventor: Tiezhu Wang
  • Patent number: 9581900
    Abstract: A method for using self aligned multiple patterning with multiple resist layers includes forming a first patterned resist layer onto a substrate, forming a spacer layer on top of the first patterned resist layer such that spacer forms on side walls of features of the first resist layer, and forming a second patterned resist layer over the spacer layer and depositing a masking layer. The method further includes performing a planarizing process to expose the first patterned resist layer, removing the first resist layer, removing the second resist layer, and exposing the substrate.
    Type: Grant
    Filed: June 29, 2015
    Date of Patent: February 28, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Feng Shieh, Chih-Ming Lai, Ken-Hsien Hsieh, Ru-Gun Liu, Shih-Ming Chang
  • Patent number: 9563122
    Abstract: A patterned photoresist is provided atop a substrate. A hardening agent is applied to the patterned photoresist to provide a polymeric coated patterned photoresist. The polymeric coated patterned photoresist is baked to provide a hardened photoresist, and subsequent the baking step, the polymeric coating is removed from the hardened photoresist by rinsing. The hardened photoresist can be removed anytime during the patterning of the substrate by an aqueous resist developer.
    Type: Grant
    Filed: April 28, 2015
    Date of Patent: February 7, 2017
    Assignee: International Business Machines Corporation
    Inventors: Joy Cheng, Matthew E. Colburn, Chi-Chun Liu
  • Patent number: 9535326
    Abstract: The inventive concepts provide methods of forming a semiconductor device. The method includes forming a neutral layer having a photosensitive property and a reflow property on an anti-reflective coating layer, performing an exposure process and a development process on the neutral layer to form a preliminary neutral pattern at least partially exposing the anti-reflective coating layer, heating the preliminary neutral pattern to form a neutral pattern, forming a block copolymer layer on the neutral pattern, and heating the block copolymer layer to form a block copolymer pattern. The block copolymer pattern includes a first pattern disposed on the anti-reflective coating layer exposed by the neutral pattern, and a second pattern disposed on the neutral pattern and chemically bonded to the first pattern.
    Type: Grant
    Filed: February 12, 2015
    Date of Patent: January 3, 2017
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jeong Ju Park, Kyoungmi Kim, Jaeho Kim, Jungsik Choi
  • Patent number: 9529265
    Abstract: Provided in one embodiment is a method that includes selecting a photoresist that is one of a positive-tone photoresist and a negative-tone photoresist. A first additive or a second additive is selected based on the photoresist. The first additive has a fluorine component and a base component attached to a polymer and is selected if the a positive-tone resist is provided. The second additive has the fluorine component and an acid component attached to the polymer and is selected with a negative-tone resist is provided. The selected photoresist and the selected additive material are applied to a target substrate.
    Type: Grant
    Filed: June 20, 2014
    Date of Patent: December 27, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: An-Ren Zi, Chen-Hau Wu, Ching-Yu Chang
  • Patent number: 9530645
    Abstract: A photoresist pattern used for forming a pattern of a block copolymer is formed on a substrate, and then an acid solution is supplied and an alkaline solution is further supplied to the photoresist pattern so as to slim and smooth the photoresist pattern. A block copolymer solution is applied to the substrate on which the smoothed photoresist pattern has been formed, to form a film of the block copolymer, and the film is heated.
    Type: Grant
    Filed: April 15, 2013
    Date of Patent: December 27, 2016
    Assignee: Tokyo Electron Limited
    Inventors: Makoto Muramatsu, Takahiro Kitano, Tadatoshi Tomita, Keiji Tanouchi
  • Patent number: 9520289
    Abstract: In a method of forming a pattern of a semiconductor device, a hard mask layer is formed on a substrate. A photoresist film is coated on the hard mask layer. The photoresist film is exposed and developed to form a first photoresist pattern. A smoothing process is performed on the first photoresist pattern to form a second photoresist pattern having a roughness property lower from that of the first photoresist pattern. In the smoothing process, a surface of the first photoresist pattern is treated with an organic solvent. An ALD layer is formed on a surface of the second photoresist pattern. The ALD layer is anisotropically etched to form an ALD layer pattern on a sidewall of the second photoresist pattern. The hard mask layer is etched using the second photoresist pattern and the ALD layer pattern as an etching mask to form a hard mask pattern.
    Type: Grant
    Filed: October 21, 2014
    Date of Patent: December 13, 2016
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jin Park, Cha-Won Koh, Hyun-Woo Kim
  • Patent number: 9519221
    Abstract: A method for curing photosensitive polyimide (PSPI) films includes the steps of: depositing a PSPI film on a selected substrate, and curing the film by microwave heating at a selected temperature from about 200 to 340° C. in a selected atmosphere containing an oxygen concentration from about 20 to 200,000 ppm. The process atmosphere may be static or flowing. The addition of oxygen improves the removal of acrylate residue and improves the Tg of the cured film, while the low processing temperature characteristic of the microwave process prevents the oxygen from damaging the polyimide backbone. The method may further include the steps of photopatterning and developing the PSPI film prior to curing. The process is particularly suitable for dielectric films on silicon for electronic applications.
    Type: Grant
    Filed: January 12, 2015
    Date of Patent: December 13, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Robert L. Hubbard, Iftikhar Ahmad
  • Patent number: 9513554
    Abstract: A microporous carbon scaffold is produced by lithographically patterning a carbon-containing photoresist, followed by pyrolysis of the developed resist structure. Prior to exposure, the photoresist is loaded with a nanoparticulate material. After pyrolysis, the nanonparticulate material is dispersed in, and intimately mixed with, the carbonaceous material of the scaffold, thereby yielding a carbon composite structure.
    Type: Grant
    Filed: June 24, 2015
    Date of Patent: December 6, 2016
    Assignee: Sandia Corporation
    Inventors: David Bruce Burckel, Cody M. Washburn, Timothy N. Lambert, Patrick Sean Finnegan, David R. Wheeler
  • Patent number: 9513553
    Abstract: A method is disclosed to form a patterned epitaxy template, on a substrate, to direct self-assembly of block copolymer for device lithography. A resist layer on a substrate is selectively exposed with actinic (e.g. UV or DUV) radiation by photolithography to provide exposed portions in a regular lattice pattern of touching or overlapping shapes arranged to leave unexposed resist portions between the shapes. Exposed or unexposed resist is removed with remaining resist portions providing the basis for a patterned epitaxy template for the orientation of the self-assemblable block copolymer as a hexagonal or square array. The method allows for simple, direct UV lithography to form patterned epitaxy templates with sub-resolution features.
    Type: Grant
    Filed: March 19, 2013
    Date of Patent: December 6, 2016
    Assignee: ASML NETHERLANDS B.V.
    Inventors: Sander Frederik Wuister, Vadim Yevgenyevich Banine, Jozef Maria Finders, Roelof Koole, Emiel Peeters, Harmeet Singh
  • Patent number: 9494865
    Abstract: Novel polymer monolith structures and methods for fabrication of the same are disclosed in a variety of embodiments. In an illustrative embodiment, a method includes forming a pattern of features on a wafer, thereby forming a patterned wafer; forming a polymer layer on the patterned wafer; using a first plasma to remove at least a portion of the polymer layer; and using a second plasma to etch off at least a portion of the pattern of features, thereby providing a structured polymer monolith. The pattern of features may include an array of pillars. Providing the structured polymer monolith may include providing a structured polymer monolith filter having an array of channels formed by the pillars. The structured polymer monolith may be composed of polypropylene.
    Type: Grant
    Filed: December 31, 2010
    Date of Patent: November 15, 2016
    Assignee: CORNELL UNIVERSITY
    Inventors: Juan P Hinestroza, Huaning Zhu
  • Patent number: 9449836
    Abstract: There is provided a manufacturing method of a semiconductor device including forming a first pattern of first features, according to a lithography process, in a photoresist layer disposed on a substrate, the lithography process having a minimum printable dimension and a minimum printable pitch, applying an additional layer on the photoresist layer having the first pattern formed therein, forming a second pattern of second features in the additional layer, the second features concentric with the first features, and etching portions of the substrate exposed through the second pattern. Further, in the provided method, the first features include geometrical features separated by a distance less than the dimension of minimum printable feature, and the geometrical features are disposed at a pitch less than the minimum printable pitch.
    Type: Grant
    Filed: July 1, 2014
    Date of Patent: September 20, 2016
    Assignee: Renesas Electronics Corporation
    Inventor: Yoshinori Matsui
  • Patent number: 9448471
    Abstract: The present invention provides a photo-mask for manufacturing structures on a semiconductor substrate, which comprises a photo-mask substrate, a first pattern, a second pattern and a forbidden pattern. A first active region, a second active region are defined on the photo-mask substrate, and a region other than the first active region and the second active region are defined as a forbidden region. The first pattern is disposed in the first active region and corresponds to a first structure on the semiconductor substrate. The second pattern is disposed in the second active region and corresponds to a second structure on the semiconductor substrate. The forbidden pattern is disposed in the forbidden region, wherein the forbidden pattern has a dimension beyond resolution capability of photolithography and is not used to form any corresponding structure on the semiconductor substrate. The present invention further provides a method of manufacturing semiconductor structures.
    Type: Grant
    Filed: July 21, 2014
    Date of Patent: September 20, 2016
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: En-Chiuan Liou, Yu-Cheng Tung, Teng-Chin Kuo, Yuan-Chi Pai, Chun-Chi Yu
  • Patent number: 9436091
    Abstract: A method for forming a fine pattern includes forming an etching target material layer on a substrate, forming a first photoresist layer on the etching target material layer, forming a metal pattern on the first photoresist layer, the metal pattern having a plurality of lines and thin film lines alternately arranged, the lines having predetermined linewidth and thickness and are spaced apart from each other by a predetermined distance, exciting surface plasmons in the metal pattern by light irradiation to produce a surface plasmon resonance that exposes a fine first pattern shape in the first photoresist layer, forming a first photoresist pattern by removing the metal pattern and developing the first photoresist layer, and etching the etching target material layer by using the first photoresist pattern as a mask.
    Type: Grant
    Filed: July 28, 2014
    Date of Patent: September 6, 2016
    Assignee: Samsung Display Co., Ltd.
    Inventors: Yong Son, Min Kang, Bong-Yeon Kim, Dong-Eon Lee, Hyun-joo Lee
  • Patent number: 9429846
    Abstract: A negative pattern is formed by applying a resist composition onto a substrate, exposing the resist film, and developing the exposed resist film in an organic solvent developer. The process further involves coating the negative pattern with a shrink agent solution of a copolymer comprising recurring units having an ?-trifluoromethylhydroxy or fluoroalkylsulfonamide group and recurring units having an acid labile group-substituted amino group in a C6-C12 ether, C4-C10 alcohol, C6-C12 hydrocarbon, C6-C16 ester or C7-C16 ketone solvent, baking the coating, and removing the excessive shrink agent for thereby shrinking the size of spaces in the pattern.
    Type: Grant
    Filed: August 29, 2014
    Date of Patent: August 30, 2016
    Assignee: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Jun Hatakeyama, Masayoshi Sagehashi, Teppei Adachi