Patents Examined by Kiho Kim
  • Patent number: 11630061
    Abstract: Provided herein are devices, systems, and methods for characterizing a biological sample in vivo or ex vivo in real-time using time-resolved spectroscopy. A light source generates a light pulse or continuous light wave and excites the biological sample, inducing a responsive fluorescent signal. A demultiplexer splits the signal into spectral bands and a time delay is applied to the spectral bands so as to capture data with a detector from multiple spectral bands from a single excitation pulse. The biological sample is characterized by analyzing the fluorescence intensity magnitude and/or decay of the spectral bands. The sample may comprise one or more exogenous or endogenous fluorophore. The device may be a two-piece probe with a detachable, disposable distal end. The systems may combine fluorescence spectroscopy with other optical spectroscopy or imaging modalities. The light pulse may be focused at a single focal point or scanned or patterned across an area.
    Type: Grant
    Filed: April 15, 2020
    Date of Patent: April 18, 2023
    Assignees: Black Light Surgical, Inc., Cedars-Sinai Medical Center
    Inventors: Pramod Butte, Keith Black, Jack Kavanaugh, Bartosz Bortnik, Zhaojun Nie
  • Patent number: 11624703
    Abstract: Techniques for detecting cannabinoid, opioid, and virus aerosols in an exhaled breath are provided. An example method of identifying a virus-containing aerosol in exhaled breath includes capturing a breath input in an aerosol filter cartridge, disposing the aerosol filter cartridge in an optical path in a spectroscopy system, detecting one or more infrared spectral features of the breath input with the spectroscopy system, and identifying the virus-containing aerosol based on the one or more infrared spectral features.
    Type: Grant
    Filed: March 3, 2021
    Date of Patent: April 11, 2023
    Assignee: VOX BIOMEDICAL LLC
    Inventor: Kurt J. Linden
  • Patent number: 11624716
    Abstract: A radiation detector including: a sensor substrate including a flexible base member and a layer provided on a first surface of the base member and formed with plural pixels that accumulates electrical charge generated in response to light converted from radiation; a conversion layer provided on the first surface side of the sensor substrate, the conversion layer converts radiation into the light; and an elastic layer provided on the opposite side of the conversion layer to a side provided with the sensor substrate, the elastic layer having a greater restoring force with respect to bending than the sensor substrate.
    Type: Grant
    Filed: September 18, 2020
    Date of Patent: April 11, 2023
    Assignee: FUJIFILM Corporation
    Inventors: Shinichi Ushikura, Munetaka Kato, Haruyasu Nakatsugawa, Keiichi Akamatsu
  • Patent number: 11624844
    Abstract: In a sensor substrate, a plurality of pixels are formed in a pixel region of a first surface of a flexible base material, and a terminal portion for electrically connecting a cable is provided in the terminal region of the first surface. A conversion layer is provided outside the terminal region of the base material and converts radiation into light. A reinforcing member is provided on a second surface of the base material to reinforce the strength of the base material. A stress neutral plane adjusting member is provided inside the terminal region and in at least a part, corresponding to the inside of the terminal region, of a cable electrically connected to the terminal portion.
    Type: Grant
    Filed: December 20, 2021
    Date of Patent: April 11, 2023
    Assignee: FUJIFILM CORPORATION
    Inventors: Shinichi Ushikura, Munetaka Kato, Tatsunori Tanimoto
  • Patent number: 11626484
    Abstract: An infrared (IR) detection sensor for detecting IR radiation. The IR detection sensor including a plurality of nanowires positioned adjacent to each other so as to define a layer. The layer has an outer surface directable towards a source of IR radiation. First and second terminals are electrically coupled to the layer and a circuit is electrically coupled to the first and second terminals. The circuit is configured to determine a value of an electrical property, such as the resistance, of the layer in response to the IR radiation absorbed by the layer.
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: April 11, 2023
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Hongrui Jiang, Seyyed Mohammad J. Moghimi
  • Patent number: 11619754
    Abstract: Disclosed herein is a method comprising: forming a doped region of a semiconductor substrate by doping a surface of the semiconductor substrate with dopants; driving the dopants into the semiconductor substrate by annealing the semiconductor substrate; controlling doping profile of the doped region by repeating doping and annealing the semiconductor substrate; forming a first electrode on the semiconductor substrate, wherein the first electrode is in electrical contact with the doped region; forming an outer electrode arranged around the first electrode, wherein the outer electrode is electrically insulated from the first electrode.
    Type: Grant
    Filed: October 29, 2021
    Date of Patent: April 4, 2023
    Assignee: SHENZHEN XPECTVISION TECHNOLOGY CO., LTD.
    Inventors: Peiyan Cao, Yurun Liu
  • Patent number: 11619598
    Abstract: The present disclosure provides systems, apparatuses, and methods for measuring submerged surfaces. Embodiments include a measurement apparatus including a main frame, a source positioned outside a pipe and connected to the main frame, and a detector positioned outside the pipe at a location diametrically opposite the source and connected to the main frame. The source may transmit a first amount of radiation. The detector may receive a second amount of radiation, determine a composition of the pipe based on the first and second amounts of radiation, and send at least one measurement signal. A control canister positioned on the main frame or on a remotely operated vehicle (ROV) attached to the apparatus may receive the at least one measurement signal from the detector and convey the at least one measurement signal to software located topside.
    Type: Grant
    Filed: January 10, 2022
    Date of Patent: April 4, 2023
    Assignee: DELTA SUBSEA LLC
    Inventors: Scott P. Dingman, Roger Warnock, Alessandro Vagata
  • Patent number: 11619750
    Abstract: A scintillator structure includes a plurality of cells and a reflector covering the plurality of cells. Here, each of the plurality of cells includes a resin and a phosphor, and the phosphor contains gadolinium oxysulfide. A breaking strength of an interface between each of the plurality of cells and the reflector is 900 gf or more.
    Type: Grant
    Filed: July 9, 2021
    Date of Patent: April 4, 2023
    Assignee: Hitachi Metals, Ltd.
    Inventors: Yousuke Nobumoto, Shinsuke Terazawa, Satoshi Shiota
  • Patent number: 11619587
    Abstract: A microfluidic device comprises a microfluidic channel having at least an inlet for receiving a fluid plug or an outlet for removing a fluid plug and a pillar based flow distributor for reorienting the fluid plug in such a way that the long axis of the fluid plug essentially is oriented perpendicular to the walls of the microfluidic channel, as opposed to its original orientation, in which the longer axis is oriented in the longitudinal direction of the narrower inlet channel. The width W of the microfluidic channel is substantially larger than the width w of the inlet or outlet channel. The microfluidic device is adapted for detecting a physical or chemical property of the fluid, the microfluidic device being configured for detecting the property in a detection area positioned across the microfluidic channel in a width direction of the microfluidic channel.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: April 4, 2023
    Assignee: PHARMAFLUIDICS NV
    Inventors: Paul Jacobs, Wim De Malsche
  • Patent number: 11614406
    Abstract: Embodiments of the present disclosure are directed to systems and methods for inspecting solar modules, and in particular systems and methods incorporating high-power light sources to impart ultraviolet fluorescence of solar modules. The systems and methods can include a filter and/or a camera.
    Type: Grant
    Filed: April 29, 2019
    Date of Patent: March 28, 2023
    Assignee: The Southern Company
    Inventors: William B. Hobbs, Jr., Braden H. Gilleland
  • Patent number: 11612371
    Abstract: A method for fluoroscopy energizes a radiation source to form a scout image on a detector and processes the scout image to determine and report a radiation field position with respect to a predetermined zone of the detector. The radiation source is energized for fluoroscopic imaging of a subject when the reported radiation field position is fully within the predetermined zone.
    Type: Grant
    Filed: January 19, 2022
    Date of Patent: March 28, 2023
    Assignee: Carestream Health, Inc.
    Inventors: Samuel Richard, Xiaohui Wang, Michael C. Lalena
  • Patent number: 11612365
    Abstract: An apparatus for detecting a locating medium in tissue includes a probe, and a console. The probe includes a handle and a detector disposed on a distal end of the probe. The console is in communication and includes a display. The display has a first graphical representation and a second graphical representation. The first graphical representation is configured to depict a count real-time count based on a signal from the detector. The second graphical representation is configured to depict a target count.
    Type: Grant
    Filed: October 29, 2021
    Date of Patent: March 28, 2023
    Assignee: Devicor Medical Products, Inc.
    Inventors: Trevor W. V. Speeg, Michael E. Henley, Brian Michael Ruffner, Michael B. Watts, Harry Kyuhoon Ahn, Elijah Kreider
  • Patent number: 11614921
    Abstract: A true random number generator is presented that includes a CMOS matrix detector with a top surface. A shell is positioned over the top surface, and the shell includes a radiation source and a luminophore or scintillator constructed to emit photons towards the top surface when the luminophore or scintillator is struck by electrons from the radioactive decay of the source of the radiation. The CMOS detector matrix is constructed to detect the photons emitted from the luminophore or scintillator and to produce a signal for the detected photons. The signal is communicated to a processor that produces true random numbers based on the signal from the detected photons.
    Type: Grant
    Filed: July 8, 2022
    Date of Patent: March 28, 2023
    Assignee: RANDAEMON sp. z o.o.
    Inventors: Jan Jakub Tatarkiewicz, Wieslaw Bohdan Kuzmicz
  • Patent number: 11614324
    Abstract: Aspects of the invention include a non-destructive bond line thickness measurement of thermal interface material on silicon packages. A non-limiting example computer-implemented method includes receiving a chip mounted on a laminate and depositing a high-density material on the chip. The computer-implemented method deposits a thermal interface material on the chip and lids the chip, and the laminate with a lid. The computer-implemented method X-rays the lid, the chip, and the laminate to produce an X-ray and measures, using a processor, from the X-ray a bond line thickness of the TIM as a distance from a bottom of the lid to a top surface of the high-density material.
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: March 28, 2023
    Assignee: International Business Machines Corporation
    Inventors: Hongqing Zhang, Jay A. Bunt, David J. Lewison, Joyce Molinelli Acocella, Yu Luo
  • Patent number: 11607135
    Abstract: Signal processing techniques that can include an embedded software low-noise response pulse detection, which can help provide an enhanced signal-to-noise characteristic, such as can help permit highly specific fast IR spectroscopic tissue analysis. Using a difference between (1) response signal values during a first time period duration of a response pulse from a tissue sample illuminated by illumination pulse, and (2) response signal values for a similar first time period duration between response pulses, for a low duty cycle (e.g., less than 50%, 10% or even at about 5% duty cycle) illumination pulse, accumulation of noise in the response signal between electromagnetic illumination pulses can be limited. In particular, the described signal pre-processing techniques can help extract meaningful information for performing spectroscopic analysis and characterization of the tissue sample despite amplitude and temporal variations that can be encountered when using the system.
    Type: Grant
    Filed: July 6, 2022
    Date of Patent: March 21, 2023
    Assignees: IR MEMTEK LLC, OHIO STATE INNOVATION FOUNDATION
    Inventors: James V. Coe, Jr., Rebecca C. Bradley
  • Patent number: 11610133
    Abstract: An apparatus for producing an infrared spectrum according to one example of the present disclosure includes: a toxic chemical gas and background infrared spectrum acquisition portion of acquiring a background of a target area and an infrared spectroscopic signal of a gas contaminant plume existing in the background; and a toxic chemical gas infrared spectrum generation portion of training a Generative Adversarial Network (GAN) using acquired background radiation intensity data as learning data, and automatically generating a toxic chemical gas simulation infrared spectrum signal according to an environment setting inputted from a user using a learned GAN. According to the present disclosure, there is an effect that an infrared spectrum of atmosphere contaminated by a toxic chemical gas may be acquired without outdoor experiments using a real toxic chemical gas.
    Type: Grant
    Filed: December 16, 2020
    Date of Patent: March 21, 2023
    Assignee: AGENCY FOR DEFENSE DEVELOPMENT
    Inventors: Chang Sik Lee, Jong Seon Kim, Hyeon Jeong Kim
  • Patent number: 11604290
    Abstract: Low-power, dual sensitivity thin oxide FG-MOSFET sensors in RF-CMOS technology for a wireless X-ray dosimeter chip, methods for radiation measurement and for charging and discharging the sensors are described. The FG-MOSFET sensor from a 0.13 ?m (RF-CMOS process, includes a thin oxide layer having a device region, a source and a drain associated with the device well region, separated by a channel region, a floating gate extending over the channel region, and a floating gate extension extending over the thin oxide layer adjacent to the device well region. In a matched sensor pair for dual sensitivity radiation measurement, the floating gate and the floating gate extension of a FG-MOSFET higher sensitivity sensor are without a salicide layer or a silicide layer formed thereon and the floating gate and the floating gate extension of a FG-MOSFET lower sensitivity sensor have a salicide layer or a silicide layer formed thereon.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: March 14, 2023
    Inventors: Behzad Yadegari, Steven McGarry, Langis Roy
  • Patent number: 11600497
    Abstract: A semiconductor review tool receives absolute Z-height values for the semiconductor wafer, such as a semiconductor wafer with a beveled edge. The absolute Z-height values can be determined by a semiconductor inspection tool. The semiconductor review tool reviews the semiconductor wafer within a Z-height based on the absolute Z-height values. Focus can be adjusted to within the Z-height.
    Type: Grant
    Filed: March 31, 2020
    Date of Patent: March 7, 2023
    Assignee: KLA CORPORATION
    Inventors: Sandeep Madhogarhia, Hari Sriraman Pathangi, Rohit Bhat
  • Patent number: 11598718
    Abstract: A method of analysing an aqueous fluid comprising obtaining a 2D-IR spectrum of a sample of the aqueous fluid using a 2D-IR spectrometer configured to apply a sequence of IR pulses to the sample, wherein the sequence comprises a pump process followed by a probe pulse, where the pump process is a single pump pulse or a sequence of a first pump pulse and a second pump pulse, and a waiting time Tw between applying the single pump pulse or the second pump pulse and applying the probe pulse is from 150 to 350 fs.
    Type: Grant
    Filed: June 7, 2019
    Date of Patent: March 7, 2023
    Assignee: The University of York
    Inventors: Matthew Baker, Neil T. Hunt, Samantha Rutherford, Gordon Hithell
  • Patent number: 11598888
    Abstract: A method of measuring an environmental contaminant includes the steps of dividing a target environment into a plurality of spaces, placing a monitor in each space, uploading device data from each monitor, and processing the device data to determine a level of environmental contamination within each space. Each monitor is configured to measure a level of an environmental contaminant within the space for a sample period. A radon monitor includes a radon sensor configured to detect radon decay events, an environmental sensor configured to measure an ambient condition of air surrounding the radon sensor, a processor configured to record device data including a count of a number of radon decay events and the ambient conditions, and a communication means for transmitting the device data. A system includes a plurality of monitors, a receiving device for receive device data from each monitor, and a cloud computer to process the device data.
    Type: Grant
    Filed: October 29, 2021
    Date of Patent: March 7, 2023
    Assignee: PROTECT, LLC
    Inventors: Kyle Hoylman, Chris Bonniwell, Christopher Ferguson